Journal of Materials Science

, Volume 49, Issue 8, pp 3242–3252 | Cite as

The local crystal structure and electronic band gap of β-sialons

  • Teak D. Boyko
  • Toni Gross
  • Marcus Schwarz
  • Hartmut Fuess
  • Alexander Moewes


The electronic properties of β-Si3N4 and β-sialons (β-Si6−z Al z O z N8−z ) solid solutions were characterized using a combination of X-ray emission spectroscopy (XES), X-ray absorption spectroscopy (XAS), and density functional theory (DFT). The electronic structure measurements reveal a single bonding environment for both the Si and Al atoms, which corresponds to a specific nonrandom structural arrangement of the Al–O solute atoms into nanotube-like clusters or channels, running parallel to the c-axis of the β-Si3N4 host structure. Compared to an arrangement of alternating Si–N and Al–O slabs (“Dupree model”), lower total energy and overall better agreement to the experimentally observed electronic features confirm this “Al–O nanotube” model for β-sialon originally proposed by Okatov to be closer to the true chemical topology of the β-Si6−z Al z O z N8−z solid solution series. The β-sialons are shown to be wide band gap semiconductors with the band gap reduction arising from the O p-states moving toward the Fermi level. This band gap reduction provides the ability for direct band gap transitions, which is very important for practical applications. In contrast to the previous observations, both measurement and theory indicate a linear dependence of band gap energy with composition z. The experimental (theoretical) electronic band gaps of β-Si6−z Al z O z N8−z with z = 0.0, 2.0, and 4.0 as determined by XAS/XES (DFT) are 7.2 ± 0.2 (5.88), 6.2 ± 0.2 (3.45), and 5.0 ± 0.2 (2.39) eV, respectively. The considerable discrepancy between experimental and theoretical values is attributable to the shortcomings of DFT, which often underestimates the electronic band gap energy.


Density Function Theory Calculation Calculated Spectrum Sialon Advance Light Source Nonequivalent Site 


  1. 1.
    Jack KH, Wilson WI (1972) Ceramics based on Si–Al–O–N and related systems. Nat Phys Sci 238:28–29CrossRefGoogle Scholar
  2. 2.
    Oyama Y, Kamigait O (1971) Solid solubility of some oxides in Si3N4. Jpn J Appl Phys 10:1637CrossRefGoogle Scholar
  3. 3.
    Metselaar R (1998) Terminology for compounds in the Si–Al–O–N system. J Eur Ceram Soc 18:183–184CrossRefGoogle Scholar
  4. 4.
    Schwarz M, Miehe G, Zerr A, Kroke E, Poe BT, Fuess H, Riedel R (2000) Spinel-Si3N4: multi-anvil press synthesis and structural refinement. Adv Mater 12:883–887CrossRefGoogle Scholar
  5. 5.
    Liddell K, Thompson D (2003) The future for multicomponent sialon ceramics. In: Komeya K, Mitomo M, Cheng YB (eds) SiAIONs, vol. 237 of Key Engineering Materials, pp 1–9Google Scholar
  6. 6.
    Hirosaki N, Kocer C, Ogata S, Tatsumi K (2005) Ab initio characterization of the mechanical and electronic properties of β-SiAlON (Si6−zAlzOzN8−z; z = 0–5). Phys Rev B 71:104105CrossRefGoogle Scholar
  7. 7.
    Kimura N, Sakuma K, Hirafune S, Asano K, Hirosaki N, Xie R-J (2007) Extra high color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode. Appl Phys Lett 90:051109CrossRefGoogle Scholar
  8. 8.
    Ekstrom T, Nygren M (1992) SiAlON ceramics. J Am Ceram Soc 75:259–276CrossRefGoogle Scholar
  9. 9.
    Gauckler LJ, Lukas HL, Petzow G (1975) Contribution to phase-diagram Si3N4–AlN–Al2O3–SiO2. J Am Ceram Soc 58:346–347CrossRefGoogle Scholar
  10. 10.
    Ekstrom T, Kall PO, Nygren M, Olsson PO (1989) Dense single-phase beta-sialon ceramics by glass-encapsulated hot isostatic pressing. J Mater Sci 24:1853–1861. doi: 10.1007/BF01105715 CrossRefGoogle Scholar
  11. 11.
    Xu X, Nishimura T, Hirosaki N, Xie R, Yamamoto Y, Tanaka H (2005) Fabrication of beta-sialon nanoceramics by high-energy mechanical milling and spark plasma sintering. Nanotechnology 16:1569–1573CrossRefGoogle Scholar
  12. 12.
    MacKenzie KJD, van Barneveld D (2006) Carbothermal synthesis of beta-sialon from mechanochemically activated precursors. J Eur Ceram Soc 26:209–215CrossRefGoogle Scholar
  13. 13.
    Alcala MD, Criado JM, Gotor FJ, Real C (2006) Beta-sialon obtained from carbothermal reduction of kaolinite employing sample controlled reaction temperature (SCRT). J Mater Sci 41:1933–1938. doi: 10.1007/s10853-006-4493-7 CrossRefGoogle Scholar
  14. 14.
    Li FJ, Wakihara T, Tatami J, Komeya K, Meguro T (2007) Synthesis of beta-sialon powder by carbothermal reduction-nitridation of zeolites with different compositions. J Eur Ceram Soc 27:2535–2540CrossRefGoogle Scholar
  15. 15.
    Benco L, Hafner J, Lences Z, Sajgalik P (2003) Electronic structure and bulk properties of beta-sialons. J Am Ceram Soc 86:1162–1167CrossRefGoogle Scholar
  16. 16.
    Ching W-Y, Mo S-D, Ouyang LZ, Rulis P, Tanaka I, Yoshiya M (2002) Theoretical prediction of the structure and properties of cubic spinel nitrides. J Am Ceram Soc 85:75–80CrossRefGoogle Scholar
  17. 17.
    Vandijen FK, Metselaar R, Helmholdt RB (1987) Neutron-diffraction study of β-sialon. J Mater Sci Lett 6:1101–1102CrossRefGoogle Scholar
  18. 18.
    Butler ND, Dupree R, Lewis MH (1984) The use of magic-angle-spinning NMR in structural studies of Si–Al–O–N phases. J Mater Sci Lett 3:469–470CrossRefGoogle Scholar
  19. 19.
    Dupree R, Lewis MH, Lengward G, Williams DS (1985) Coordination of Si atoms in silicon-oxynitrides determined by magic-angle-spinning NMR. J Mater Sci Lett 4:393–395CrossRefGoogle Scholar
  20. 20.
    Dupree R, Lewis MH, Smith ME (1988) Structural characterization of ceramic phases with high-resolution Al-27 NMR. J Appl Crystallogr 21:109–116CrossRefGoogle Scholar
  21. 21.
    Smith ME (1992) Observation of mixed Al(O, N)4 structural units by Al-27 magic angle spinning NMR. J Phys Chem 96:1444–1448CrossRefGoogle Scholar
  22. 22.
    Sjöberg J, Ericsson T, Lindqvist O (1992) Local-structure of beta’-sialons: an EXAFS study study. J Mater Sci 27:5911–5915. doi: 10.1007/BF01119759 CrossRefGoogle Scholar
  23. 23.
    Hagio T, Takase A, Umebayashi S (1992) X-ray photoelectron spectroscopic studies of beta-sialons. J Mater Sci Lett 11:878–880CrossRefGoogle Scholar
  24. 24.
    Tatsumi K, Mizoguchi T, Yoshioka S, Yamamoto T, Suga T, Sekine T, Tanaka I (2005) Distribution of solute atoms in beta- and spinel Si6−zAlzOzN8−z by Al K-edge X-ray absorption near-edge structure. Phys Rev B 71:033202CrossRefGoogle Scholar
  25. 25.
    Tatsumi K, Tanaka I, Adachi H, Yoshiya M (2002) Atomic structures and bondings of beta- and spinel-Si6−zAlzOzN8−z by first-principles calculations. Phys Rev B 66:165210CrossRefGoogle Scholar
  26. 26.
    Ching W-Y, Huang MZ, Mo SD (2000) Electronic structure and bonding of beta-SiAlON. J Am Ceram Soc 83:780–786CrossRefGoogle Scholar
  27. 27.
    Fang C, Metselaar R (2003) First-principles calculations of microdomain models for beta-sialon Si5AlON7. J Am Ceram Soc 86:1956–1958CrossRefGoogle Scholar
  28. 28.
    Okatov SV, Ivanovskii AL (2001) Chemical bonding and atomic ordering effects in β-SiAlON. Int J Inorg Mater 3:923–930CrossRefGoogle Scholar
  29. 29.
    Boyko TD, Zvoriste CE, Kinski I, Riedel R, Hering S, Huppertz H, Moewes A (2011) Anion ordering in spinel-type gallium oxonitride. Phys Rev B 84:085203CrossRefGoogle Scholar
  30. 30.
    Roisnel T, Rodriguez-Carvajal J (2001) A windows tool for powder diffraction pattern analysis. In: Delhez R, Mittemeijer EJ (eds) EPDIC 7: European Powder Diffraction, Pts 1 and 2, vol 378-3 of Mater Sci Forum, pp 118–123Google Scholar
  31. 31.
    Regier T, Krochak J, Sham TK, Hu YF, Thompson J, Blyth RIR (2007) Performance and capabilities of the Canadian Dragon: the SGM beamline at the Canadian Light Source. Nucl Instrum Methods Phys Res Sect A 582:93–95CrossRefGoogle Scholar
  32. 32.
    Hu YF, Zuin L, Wright G, Igarashi R, McKibben M, Wilson T, Chen SY, Johnson T, Maxwell D, Yates BW, Sham TK, Reininger R (2007) Commissioning and performance of the variable line spacing plane grating monochromator beamline at the Canadian Light Source. Rev Sci Instrum 78:083109CrossRefGoogle Scholar
  33. 33.
    Jia JJ, Callcott TA, Yurkas J, Ellis AW, Himpsel FJ, Samant MG, Stöhr J, Ederer DL, Carlisle JA, Hudson EA, Terminello LJ, Shuh DK, Perera RCC (1995) First experimental results from IBM/TENN/TULANE/LLNL/LBL undulator beamline at the advanced light-source. Rev Sci Instrum 66:1394–1397CrossRefGoogle Scholar
  34. 34.
    Boyko TD, Bailey E, Moewes A, McMillan PF (2010) Class of tunable wide band gap semiconductors γ-(GexSi1−x)3N4. Phys Rev B 81:155207CrossRefGoogle Scholar
  35. 35.
    Braun C, Seibald M, Böerger SL, Oeckler O, Boyko TD, Moewes A, Miehe G, Tüecks A, Schnick W (2010) Material properties and structural characterization of M3Si6O12N2:Eu2+ (M = Ba, Sr): a comprehensive study on a promising green phosphor for pc-LEDs. Chem Eur J 16:9646–9657CrossRefGoogle Scholar
  36. 36.
    Schwarz K, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun 147:71–76CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  38. 38.
    Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401CrossRefGoogle Scholar
  39. 39.
    McLeod JA, Kurmaev EZ, Sushko PV, Boyko TD, Levitsky IA, Moewes A (2012) Selective response of mesoporous silicon to adsorbents with nitro groups. Chem Eur J 18:2912–2922CrossRefGoogle Scholar
  40. 40.
    Achkar AJ, Regier TZ, Wadati H, Kim YJ, Zhang H, Hawthorn DG (2011) Bulk sensitive X-ray absorption spectroscopy free of self-absorption effects. Phys Rev B 83:081106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Teak D. Boyko
    • 1
  • Toni Gross
    • 2
  • Marcus Schwarz
    • 3
  • Hartmut Fuess
    • 4
  • Alexander Moewes
    • 1
  1. 1.Department of Physics and Engineering PhysicsUniversity of SaskatchewanSaskatoonCanada
  2. 2.Eduard-Zintl-Institute for Inorganic and Physical ChemistryTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Institute for Inorganic ChemistryTechnische Universität-Bergakademie FreibergFreibergGermany
  4. 4.Institute for Materials ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations