Journal of Materials Science

, Volume 49, Issue 7, pp 2795–2801 | Cite as

New insights into the crystallization of cordierite from a stoichiometric glass by in situ high-temperature SEM

  • Christian Bocker
  • Maher Kouli
  • Günter Völksch
  • Christian Rüssel


The crystallization of cordierite from stoichiometric glass is observed in situ in the scanning electron microscope. A heating stage was, therefore, operated at 1000 and 1100 °C. The surface crystallization of well-separated crystals was recorded. Surprisingly, at the late stage of crystallization, the formation of cracks as well as a squeezing out of a low viscous phase took place. To our knowledge, this has not been reported before and gives rise to new considerations of the crystallization mechanism of cordierite from glasses.


Cordierite Glassy Phase Crystallization Front Surface Crystallization Geometrical Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Supplementary material 1 (MPG 6236 kb)

Supplementary material 2 (MPG 3286 kb)


  1. 1.
    Tammann G (1933) Der Glaszustand Leop. Voß, LeipzigGoogle Scholar
  2. 2.
    Vogel W (1994) Glass chemistry. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Gutzow I, Schmelzer J (1995) The vitreous state: thermodynamics, structure, rheology and crystallization. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Fuss T, Mogus-Milankovic A, Ray CS, Lesher CE, Youngman R, Day DE (2006) Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure. J Non-Cryst Solids 352:4101–4111CrossRefGoogle Scholar
  5. 5.
    Du J, Corrales LR (2006) Structure, dynamics, and electronic properties of lithium disilicate melt and glass. J Chem Phys 125:114702. doi: 10.1063/1.2345060 CrossRefGoogle Scholar
  6. 6.
    Fokin VM, Zanotto ED, Schmelzer JWP, Potapov OV (2005) New insights on the thermodynamic barrier for nucleation in glasses: the case of lithium disilicate. J Non-Cryst Solids 351:1491–1499CrossRefGoogle Scholar
  7. 7.
    Soares PC, Zanotto ED, Fokin VM, Jain H (2003) TEM and XRD study of early crystallization of lithium disilicate glasses. J Non-Cryst Solids 331:217–227CrossRefGoogle Scholar
  8. 8.
    Wange P, Höche T, Rüssel C, Schnapp JD (2002) Microstructure-property relationship in high-strength MgO–Al2O3–SiO2–TiO2 glass–ceramics. J Non-Cryst Solids 298:137–145CrossRefGoogle Scholar
  9. 9.
    Torres FJ, Alarcon J (2003) Effect of additives on the crystallization of cordierite-based glass-ceramics as glazes for floor tiles. J Eur Ceram Soc 23:817–826CrossRefGoogle Scholar
  10. 10.
    Avramov I, Völksch G (2002) Near-surface crystallization of cordierite glass. J Non-Cryst Solids 304:25–30CrossRefGoogle Scholar
  11. 11.
    Müller R, Naumann R, Reinsch S (1996) Surface nucleation of μ-cordierite in cordierite glass: thermodynamic aspects. Thermochim Acta 280–281:191–204CrossRefGoogle Scholar
  12. 12.
    Meagher EP, Gibbs GV (1977) The polymorphism of cordierite: II. The crystal structure of indialite. Can Mineral 15:43–49Google Scholar
  13. 13.
    Gregory AG, Veasey TJ (1972) Review: the crystallization of cordierite glass. J Mater Sci 7:1327–1341. doi: 10.1007/BF00550700 CrossRefGoogle Scholar
  14. 14.
    Karkhanavala MD, Hummel FA (1953) The polymorphism of cordierite. J Am Ceram Soc 36:389–392CrossRefGoogle Scholar
  15. 15.
    Fokin V, Zanotto E, Yuritsyn N, Schmelzer J (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non-Cryst Solids 352:2681–2714CrossRefGoogle Scholar
  16. 16.
    Beall GH (2009) Refractory glass-ceramics based on alkaline earth aluminosilicates. J Eur Ceram Soc 29:1211–1219CrossRefGoogle Scholar
  17. 17.
    Müller R, Zanotto ED, Fokin VM (2000) Surface crystallization of silicate glasses: nucleation sites and kinetics. J Non-Cryst Solids 274:208–231CrossRefGoogle Scholar
  18. 18.
    Zanotto ED (1991) Surface crystallization kinetics in soda lime silica glasses. J Non-Cryst Solids 129:183–190CrossRefGoogle Scholar
  19. 19.
    Reinsch S, Nascimento MLF, Müller R, Zanotto ED (2008) Crystal growth kinetics in cordierite and diopside glasses in wide temperature ranges. J Non-Cryst Solids 354:5386–5394CrossRefGoogle Scholar
  20. 20.
    Heide K, Hartmann E, Stelzner T, Müller R (1996) Degassing of a cordierite glass melt during nucleation and crystallization. Thermochim Acta 280–281:243–250CrossRefGoogle Scholar
  21. 21.
    Völksch G, Kittel T, Siegelin F, Gregori G, Kleebe H-J (2002) In situ hot stage scanning electron microscopy and optical heating stage microscopy of cordierite glass surfaces. Phys Chem Glasses Eur J Glass Sci Technol Part B 43C:311–313Google Scholar
  22. 22.
    Gregori G, Kleebe H-J, Siegelin F, Ziegler G (2002) In situ SEM imaging at temperatures as high as 1450 °C. J Electron Microsc 51:347–352CrossRefGoogle Scholar
  23. 23.
    Wisniewski W, Baptista CA, Müller M, Völksch G, Rüssel C (2011) Surface crystallization of cordierite from glass studied by high-temperature X-ray diffraction and electron backscatter diffraction (EBSD). Cryst Growth Des 11:4660–4666CrossRefGoogle Scholar
  24. 24.
    Ziemath EC, Diaz-Mora N, Zanotto ED (1997) Crystal morphologies on a cordierite glass surface. Phys Chem Glasses Eur J Glass Sci Technol Part B 38:1–5Google Scholar
  25. 25.
    Wisniewski W, Baptista CA, Rüssel C (2012) Orientational changes during the surface crystallisation of cordierite from a B2O3/Al2O3/MgO/SiO2 glass. CrystEngCommun 14:5434CrossRefGoogle Scholar
  26. 26.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  27. 27.
    Völksch G, Heide K (1997) Dissolved gases and minor component effects on glass crystallization. J Non-Cryst Solids 219:119–127CrossRefGoogle Scholar
  28. 28.
    Wisniewski W, Schröter B, Zscheckel T, Rüssel C (2012) A global glassy layer on BaAl2B2O7 crystals formed during surface crystallization of BaO·Al2O3·B2O3 glass. Cryst Growth Des 12:1586–1592CrossRefGoogle Scholar
  29. 29.
    Avramov I, Höche T, Henderson GS (2008) Possible differences between the surface and bulk structure of glasses. J Non-Cryst Solids 354:4681–4684CrossRefGoogle Scholar
  30. 30.
    Seiler H (1983) Secondary-electron emission in the scanning electron-microscope. J Appl Phys 54:R1–R18CrossRefGoogle Scholar
  31. 31.
    Okuyama M, Fukui T, Sakurai C (1993) Phase transformation and mechanical properties of B2O3-doped cordierite derived from complex-alkoxide. J Mater Sci 28:4465–4470. doi: 10.1007/BF01154958 CrossRefGoogle Scholar
  32. 32.
    Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81:1–17CrossRefGoogle Scholar
  33. 33.
    Müller R, Gaber M, Gottschling P (2004) Water release and crystallisation of glass powders. Phys Chem Glasses Eur J Glass Sci Technol Part B 45:85–89Google Scholar
  34. 34.
    Shelby JE (2008) A limited review of water diffusivity and solubility in glasses and melts. J Am Ceram Soc 91:703–708CrossRefGoogle Scholar
  35. 35.
    Müller R (1997) Surface nucleation in cordierite glass. J Non-Cryst Solids 219:110–118CrossRefGoogle Scholar
  36. 36.
    Morinaga K, Takebe H (1996) Crystallization processes of cordierite glasses. Ber Bunsenges Phys Chem 100:1423–1427CrossRefGoogle Scholar
  37. 37.
    Gilabert FA, Dal Bo M, Cantavella V, Sanchez E (2012) Fracture patterns of quartz particles in glass feldspar matrix. Mater Lett 72:148–152CrossRefGoogle Scholar
  38. 38.
    Kriven WM, Lee SJ (2005) Toughening of mullite/cordierite laminated composites by transformation weakening of beta-cristobalite interphases. J Am Ceram Soc 88:1521–1528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Christian Bocker
    • 1
  • Maher Kouli
    • 1
  • Günter Völksch
    • 1
  • Christian Rüssel
    • 1
  1. 1.Otto-Schott-InstitutJena UniversityJenaGermany

Personalised recommendations