Advertisement

Journal of Materials Science

, Volume 49, Issue 6, pp 2456–2464 | Cite as

Polyalkylthiophene-containing electron donor and acceptor heteroaromatic bicycles: synthesis, photo-physical, and electroluminescent properties

  • Akshaya K. Palai
  • Amit Kumar
  • K. Shashidhara
  • Sarada P. Mishra
Article

Abstract

The synthesis and characterization of a series of polyalkylthiophenes-containing electron-rich thienothiophene (donor heteroaromatic bicycle) and electron-deficient benzothiadiazole (acceptor heteroaromatic bicycle) block have been reported. The polymers are synthesized by Stille cross-coupling reaction and are found to be having high molecular weight with number-average molecular weight in the range of 7.1 × 104–5.7 × 104. The photo-physical, electro-chemical, and electroluminescent (EL) properties of the polymers are investigated in detail. The optical band gap of the polymers is found to be in the range of 1.53–1.54 eV. These new polymers are luminescent in nature and showed red photoluminescence in chloroform solution (722–740 nm) as well as in thin film (781–786 nm). Ionization potential for these polymers is calculated and falling in the range of 5.23–5.33 eV. Polymer light emitting diodes with configuration ITO/PDOT:PSS/polymer/BCP/Alq3/LiF/Al have been fabricated, and a deep red emission is observed. The EL maxima of polymers are found to be in the range of 750–760 nm with threshold voltages around 4.0–5.5 V. The fabricated devices show luminescence around 40 cd/m2 at current density of 100 mA/cm2 with maximum value of 580–810 cd/m2 at 11 V.

Graphical abstract

Keywords

Thiophene High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Thiadiazole Thermo Gravimetric Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dang MT, Hirsch L, Wantz G, Wuest JD (2013) Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem Rev 113:3734–3765CrossRefGoogle Scholar
  2. 2.
    Yang C, Song H-S, Liu D-B (2013) Pure blue light-emitting fluorene-based conjugated polymer with excellent thermal, photophysical, and electroluminescent properties. J Mater Sci 48:6719–6727. doi: 10.1007/s10853-013-7473-8 CrossRefGoogle Scholar
  3. 3.
    Dkhila SB, Bourguiga R, Davenas J, Cornu D (2012) Influence of the polymer matrix on the efficiency of hybrid solar cells based on silicon nanowires. Mater Sci Eng B 177:173–179CrossRefGoogle Scholar
  4. 4.
    Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091CrossRefGoogle Scholar
  5. 5.
    Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923CrossRefGoogle Scholar
  6. 6.
    Forrest SR, Thompson ME (2007) Introduction: organic electronics and optoelectronics. Chem Rev 107:923–925CrossRefGoogle Scholar
  7. 7.
    Sondergaard RR, Hosel M, Krebs FC (2013) Roll-to-roll fabrication of large area functional organic materials. J Polym Sci B 51:16–34CrossRefGoogle Scholar
  8. 8.
    Lanzi M, DiNicola FP, Livi M, Paganin L, Cappelli F, Pierini F (2013) Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing. J Mater Sci 48:3877–3893. doi: 10.1007/s10853-013-7204-1 CrossRefGoogle Scholar
  9. 9.
    Lanzi M, Paganin L, Errani F (2012) Synthesis, characterization and photovoltaic properties of a new thiophene-based double-cable polymer with pendent fullerene group. Polymer 53:2134–2145CrossRefGoogle Scholar
  10. 10.
    Chen CH, Hsieh CH, Dubosc M, Cheng YJ, Hsu CS (2010) Synthesis and characterization of bridged bithiophene-based conjugated polymers for photovoltaic applications: acceptor strength and ternary blends. Macromolecules 43:697–708CrossRefGoogle Scholar
  11. 11.
    Palai AK, Mishra SP, Kumar A, Srivastava R, Kamalasanan MN, Patri M (2010) Synthesis and characterization of red-emitting poly(aryleneethynylene)s based on 2,5-bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2h,5h)-dione (DPP). Macromol Chem Phys 211:1043–1053CrossRefGoogle Scholar
  12. 12.
    Liu J, Zhang R, Sauve G, Kowalewski T, McCullough RD (2008) Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2′,3′-d]pyrrole based copolymers with surprisingly high charge carrier mobilities. J Am Chem Soc 130:13167–13176CrossRefGoogle Scholar
  13. 13.
    Hwang YJ, Kim FS, Xin H, Jenekhe SA (2012) New thienothiadiazole-based conjugated copolymers for electronics and optoelectronics. Macromolecules 45:3732–3739CrossRefGoogle Scholar
  14. 14.
    Mishra SP, Palai AK, Srivastava R, Kamalasanan MN, Patri M (2009) Dithieno[3,2-b:2′,3′-d]pyrrole–alkylthiophene–benzo[c][1,2,5]thiadiazole-based highly stable and low band gap polymers for polymer light-emitting diodes. J Polym Sci Part A 47:6514–6525CrossRefGoogle Scholar
  15. 15.
    Intemann JJ, Hellerich ES, Tlach BC, Ewan MD, Barnes CA, Bhuwalka A, Cai M, Shinar J, Shinar R, Jeffries-EL M (2012) Altering the conjugation pathway for improved performance of benzobisoxazole-based polymer guest emitters in polymer light-emitting diodes. Macromolecules 45:6888–6897CrossRefGoogle Scholar
  16. 16.
    Tamura K, Shiotsuki M, Kobayashi N, Masuda T, Sanda F (2009) Synthesis and properties of conjugated polymers containing 3,9- and 2,9-linked carbazole units in the main chain. J Polym Sci Part A 47:3506–3517CrossRefGoogle Scholar
  17. 17.
    Blouin N, Leclerc M (2008) Poly(2,7-carbazole)s: structure−property relationships. Acc Chem Res 41:1110–1119CrossRefGoogle Scholar
  18. 18.
    Ogawa K, Rasmussen SC (2006) N-Functionalized poly(dithieno[3,2-b:2‘,3‘-d]pyrrole)s: highly fluorescent materials with reduced band gaps. Macromolecules 39:1771–1778CrossRefGoogle Scholar
  19. 19.
    Shahid M, Ashraf RS, Klemm E, Sensfuss S (2006) Synthesis and properties of novel low-band-gap thienopyrazine-based poly(heteroarylenevinylene)s. Macromolecules 39:7844–7853CrossRefGoogle Scholar
  20. 20.
    Poelking C, Cho E, Malafeev A, Ivanov V, Kremer K, Risko C, Brédas J-L, Andrienko D (2013) Characterization of charge-carrier transport in semicrystalline polymers: electronic couplings site energies and charge-carrier dynamics in poly(bithiophene-alt-thienothiophene) [PBTTT]. J Phys Chem C 117:1633–1640CrossRefGoogle Scholar
  21. 21.
    Bijleveld JC, Verstrijden RAM, Wienk MM, Janssen RAJ (2011) Copolymer of diketopyrrolopyrole and thienothiophene for photovaltaic cells. J Mater Chem 21:9224CrossRefGoogle Scholar
  22. 22.
    McCulloch I, Heeney M, Chabinyc ML, DeLongchamp D, Kline RJ, Colle M, Duffy W, Fischer D, Gundlach D, Hamadani B, Hamilton R, Richter L, Salleo A, Shkunov M, Sparrowe D, Tierney S, Zhang W (2009) Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv Mater 21:1091–1109CrossRefGoogle Scholar
  23. 23.
    Murphy AR, Frechet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096CrossRefGoogle Scholar
  24. 24.
    Biniek L, Chochos CL, Leclerc N, Hadziioannou G, Kallitsis JK, Bechara R, Leveque P, Heiser T (2009) Thienothiophene-alt-for photovoltaic applications: design, synthesis, material characterization and device performances. J Mater Chem 19:4946–4951CrossRefGoogle Scholar
  25. 25.
    Biniek L, Chochos CL, Hadziioannou G, Leclerc N, Leveque P, Heiser T (2010) Electronic properties and photovoltaic performances of a series of oligothiophene copolymers incorporating both thieno[3,2-b]thiophene and 2,1,3-benzothiadiazole moieties. Macromol Rapid Commun 31:651–656CrossRefGoogle Scholar
  26. 26.
    Lim E, Jung B-J, Lee J, Shim H-K, Lee J-I, Yang YS, DoL M (2005) Thin-film morphologies and solution-processable field-effect transistor behavior of a fluorene−thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules 38:4531–4535CrossRefGoogle Scholar
  27. 27.
    Beaupre S, Leclerc M (2002) Fluorene-based copolymers for red-light-emitting diodes. Adv Funct Mater 12:192–196CrossRefGoogle Scholar
  28. 28.
    Muller CD, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K (2003) Multi-colour organic light-emitting displays by solution processing. Nature 421:829–833CrossRefGoogle Scholar
  29. 29.
    Johnson JR, Rotenberg DH, Ketcham R, Thiazolothiazoles II (1970) Parent heterocycle and its carboxylic and amino derivatives. J Am Chem Soc 92:4046–4050CrossRefGoogle Scholar
  30. 30.
    Wen S, Pei J, Zhou Y, Li P, Xue L, Li Y, Xu B, Tian W (2009) Synthesis of 4,7-diphenyl-2,1,3-benzothiadiazole-based copolymers and their photovoltaic applications. Macromolecules 42:4977–4984CrossRefGoogle Scholar
  31. 31.
    Wang J-L, Zhou Y, Li Y, Pei J (2009) Solution-processable gradient red-emitting π-conjugated dendrimers based on benzothiadiazole as core: synthesis, characterization, and device performances. J Org Chem 74:7449–7456CrossRefGoogle Scholar
  32. 32.
    Liu J, Bu L, Dong J, Zhou Q, Geng Y, Ma D, Wang L, Jing X, Wang F (2007) Green light-emitting polyfluorenes with improved color purity incorporated with 4,7-diphenyl-2,1,3-benzothiadiazole moieties. J Mater Chem 17:2832–2838CrossRefGoogle Scholar
  33. 33.
    Zhang X, Gorohmaru H, Kadowaki M, Kobayashi T, Ishi-iT Thiemann T, Mataka S (2004) Benzo-2,1,3-thiadiazole-based, highly dichroic fluorescent dyes for fluorescent host–guest liquid crystal displays. J Mater Chem 14:1901–1904CrossRefGoogle Scholar
  34. 34.
    Kato S-I, Matsumoto T, Shigeiwa M, Gorohmaru H, Maeda S, Ishi-i T, Mataka S (2006) Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections. Chem Eur J 12:2303–2317CrossRefGoogle Scholar
  35. 35.
    Karakus M, Apaydin DH, Yildin DE, Toppare L (2012) Benzotriazole and benzothiadiazole containing conjugated copolymers for organic solar cells. Polymer 53:1198–1202CrossRefGoogle Scholar
  36. 36.
    Pei J, Wen S, Zhou Y, Dong Q, Liu Z, Zhang J, Tian WA (2011) low band gap donor–acceptor containing fluorene and benzothiadiazole units: synthesis and photovoltaic properties. New J Chem 35:385–393CrossRefGoogle Scholar
  37. 37.
    Mishra SP, Palai AK, Srivastava R, Kamalasanan MN, Patri M (2010) Highly air-stable thieno[3,2-b]thiophene-thiophene-thiazolo[5,4-d]thiazole-based polymers for light-emitting diodes. Macromol Chem Phys 211:1890–1899CrossRefGoogle Scholar
  38. 38.
    Marsitzky D, Vestberg R, Blainey P, Tang BT, Hawker CJ, Carter KR (2001) Self-encapsulation of poly-2,7-fluorenes in a dendrimer matrix. J Am Chem Soc 123:6965–6972CrossRefGoogle Scholar
  39. 39.
    Kumar A, Srivastava R, Bawa SS, Singh D, Singh K, Chauhan G, Singh I, Kamalasanan MN (2010) Synthesis, characterization and luminescent properties of terbium complexes. J Lumin 130:1516–1520CrossRefGoogle Scholar
  40. 40.
    Xue S, Yao L, Liu S, Gu C, Shen F, Li W, Zheng H, Wu H, Ma Y (2012) Simultaneous enhancement of the carrier mobility and luminous efficiency through thermal annealing a molecular glass material and device. J Mater Chem 22:21502–21506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Akshaya K. Palai
    • 1
    • 3
  • Amit Kumar
    • 2
    • 3
  • K. Shashidhara
    • 1
  • Sarada P. Mishra
    • 1
  1. 1.Polymer Science and Technology CentreNaval Materials Research LaboratoryAmbernathIndia
  2. 2.Centre for Organic ElectronicsNational Physical LaboratoryNew DelhiIndia
  3. 3.Department of ChemistryKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations