Advertisement

Journal of Materials Science

, Volume 49, Issue 6, pp 2415–2429 | Cite as

A comparative study of microstructure and mechanical behavior of CO2 and diode laser deposited Cu–38Ni alloy

  • Sudip Bhattacharya
  • Guru P. Dinda
  • Ashish K. Dasgupta
  • Jyotirmoy Mazumder
Article

Abstract

Cu–38Ni alloy was deposited on C71500 (Cu–30Ni) substrates by a laser-aided direct metal deposition technique using CO2 and diode lasers. Structure–property relationships of deposited specimens were investigated by optical microscopy, electron microscopy, X-ray diffraction techniques, and microhardness and tensile measurements. Laser-deposited specimens’ microstructures were primarily dendritic, forming columnar grains growing epitaxially from the substrate and subsequent layers along the preferred crystallographic growth. The grain growth pattern and grain size distribution was significantly different in both specimens. The lattice parameter of the solid solution phase was relatively larger in diode laser-formed specimen; CO2 laser-formed specimens showed relatively higher but non-uniform hardness distribution whereas a very uniform hardness distribution was observed in diode laser formed specimens. Diode laser formed specimens showed higher tensile properties compared to CO2 laser formed specimens which were comparable to C71500 substrates. Microstructure and mechanical behavior were explained based on laser processing parameters.

Keywords

Diode Laser Grain Size Distribution Select Area Electron Diffraction Pattern Alloy Specimen Powder Feed Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The current investigation was financially supported by the Office of Naval Research. Authors would like to thank the colleagues at the Electron Microscope Analysis Laboratory (EMAL) in University of Michigan and Focus: HOPE for their help in this work.

References

  1. 1.
    Mao X, Fang F, Yang F, Jiang J, Tan R (2009) Effect of annealing on microstructure and properties of Cu–30Ni alloy tube. J Mater Process Technol 209:2145–2151CrossRefGoogle Scholar
  2. 2.
    Jie Z, Qing W, Yingmin W, Lishi W, Chuang D (2010) Effect of heat treatment on the highly corrosion-resistant Cu70Ni27.7Fe2.3 alloy. J Alloy Compd 505:505–509CrossRefGoogle Scholar
  3. 3.
    Drolenga LJP, Ijsseling FP, Kolster BH (1983) The influence of alloy composition and microstructure on the corrosion behaviour of Cu–Ni alloys in seawater. Mater Corros 34:167–178Google Scholar
  4. 4.
    Kang S, Domalavage PK, Grant NJ (1986) Mechanical properties of rapidly solidified modified cupro–nickel alloys. Mater Sci Eng 78:33–44CrossRefGoogle Scholar
  5. 5.
    Caron RN, Barth RG, Tyler DE (2004) ASM handbook online, vol 9. ASM International, Novelty, pp 775–788Google Scholar
  6. 6.
    Chakrabarti DJ, Laughlin DE, Chen SW, Chang YA (1992) ASM handbook online, vol 3. ASM International, Novelty, pp 2.167–2.182Google Scholar
  7. 7.
    Dündar S (2004) Dendritic solidification in a copper nickel alloy. Turk J Eng Environ Sci 28:129–134Google Scholar
  8. 8.
    Doherty RD, Feest EA, Holm K (1973) Dendritic solidification of Cu–Ni alloys: part I. Initial growth of dendrite structure. Metall Mater Trans B 4:115–124Google Scholar
  9. 9.
    Lo SH, Gibbon WM, Holliongshead RS (1987) Corrosion resistance enhancement of marine alloys by rapid solidification. J Mater Sci 22:3293–3296. doi: 10.1007/BF01161194 CrossRefGoogle Scholar
  10. 10.
    Bhattacharya S, Dinda GP, Dasgupta AK, Mazumder J (2011) Microstructural evolution of AISI 4340 steel during direct metal deposition process. Mater Sci Eng A 528:2309–2318CrossRefGoogle Scholar
  11. 11.
    Baril D, Angers R, Baril J (1992) Fabrication and tensile properties of rapidly solidified Cu–10 wt% Ni alloy. Mater Sci Eng A 158:7–10CrossRefGoogle Scholar
  12. 12.
    Adak B, Nash P, Chen D, Swiglo A (2005) Microstructural characterization of laser cladding of Cu–30Ni. J Mater Sci 40:2051–2054. doi: 10.1007/s10853-005-1231-5 CrossRefGoogle Scholar
  13. 13.
    Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3D components. JOM 49:55–60CrossRefGoogle Scholar
  14. 14.
    Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Mater Res Innov 3:118–131CrossRefGoogle Scholar
  15. 15.
    Koch JL, Mazumder J (2000) U.S. Patent Number 6,122,564, 19 Sept 2000Google Scholar
  16. 16.
    Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Lasers Eng 34:397–414CrossRefGoogle Scholar
  17. 17.
    Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509:98–104CrossRefGoogle Scholar
  18. 18.
    Singh J, Mazumder J (1987) Effect of extended solid solution of Hf on the microstructure of the laser clad Ni–Fe–Cr–Al–Hf alloys. Acta Metall 35:1995–2003CrossRefGoogle Scholar
  19. 19.
    Kadolkar PB, Watkins TR, De Hosson JThM, Kooi BJ, Dahotre NB (2007) State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Mater 55:1203–1214CrossRefGoogle Scholar
  20. 20.
    Pilloz M, Pelletier JM, Vannes AB (1992) Residual stresses induced by laser coatings: phenomenological analysis and predictions. J Mater Sci 27:1240–1244. doi: 10.1007/BF01142030 CrossRefGoogle Scholar
  21. 21.
    Bhattacharya S, Dinda GP, Dasgupta AK, Natu H, Dutta B, Mazumder J (2011) Microstructural evolution and mechanical, and corrosion property evaluation of Cu–30Ni alloy formed by direct metal deposition process. J Alloy Compd 509:6364–6373CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phy A 63:109–115CrossRefGoogle Scholar
  24. 24.
    Pelletier JM, Sahour MC, Pilloz M, Vannes AB (1993) Influence of processing conditions on geometrical features of laser claddings obtained by powder injection. J Mater Sci 28:5184–5188. doi: 10.1007/BF00570061 CrossRefGoogle Scholar
  25. 25.
    Tolochko NK, Laoui T, Khlopkov YV, Mozzharov SE, Titov VI, Ignatiev MB (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 6:155–160CrossRefGoogle Scholar
  26. 26.
    Gäumann M, Henry S, Cléton F, Wagnière J-D, Kurz W (1999) Epitaxial laser metal forming: analysis of microstructure formation. Mater Sci Eng, A 271:232–241CrossRefGoogle Scholar
  27. 27.
    Gäumann M, Bezençon C, Canalis P, Kurz W (2001) Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater 49:1051–1062CrossRefGoogle Scholar
  28. 28.
    Dinda GP, Dasgupta AK, Mazumder J (2012) Texture control during laser deposition of nickel-based superalloy. Scripta Mater 67:503–506CrossRefGoogle Scholar
  29. 29.
    Mokadem S, Bezençon C, Drezet J-M, Jacot A, Wagnière J-D, Kurz W (2004) Microstructure control during single crystal laser welding and deposition of Ni-base superalloys. In: Rappaz M, Beckermann C, Trivedi R (eds.), Solidification processes and microstructures: a symposium in Honor of Prof. W. Kurz, The Minerals, Metals, and Materials Society, Pennsylvania, pp 67–75Google Scholar
  30. 30.
    van den Burg M, De Hosson J, Th M (1993) Martensitic transformations in laser processed coatings. Acta Metall Mater 41:2557–2564CrossRefGoogle Scholar
  31. 31.
    Tenney DR, Carpenter JA, Houska CR (1970) X-ray diffraction technique for the investigation of small diffusion zones. J Appl Phys 41:4485–4492CrossRefGoogle Scholar
  32. 32.
    James MR, Gnanamuthu DS, Moores RJ (1984) Mechanical state of laser melted surfaces. Scripta Metall Mater 18:357–361Google Scholar
  33. 33.
    Riabkina-Fishman M, Zevin LS, Zahavi J (1988) X-ray diffraction study of phase composition and residual stresses in laser-treated 1045 steel. J Mater Sci Lett 7:741–744CrossRefGoogle Scholar
  34. 34.
    Lubarda VA (2003) On the effective lattice parameter of binary alloys. Mech Mater 35:53–68CrossRefGoogle Scholar
  35. 35.
    Danilchenko VE, Sidorin YM (1996) Influence of laser treatment on martensitic transformation characteristics in Fe–Ni alloys. Mater Sci Forum 228–231:563–566CrossRefGoogle Scholar
  36. 36.
    Sun GF, Bhattacharya S, Dinda GP, Dasgupta A, Mazumder J (2011) Influence of processing parameters on lattice parameters in laser deposited tool alloy steel. Mater Sci Eng A 528:5141–5145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sudip Bhattacharya
    • 1
    • 3
  • Guru P. Dinda
    • 2
    • 4
  • Ashish K. Dasgupta
    • 2
  • Jyotirmoy Mazumder
    • 1
  1. 1.Center for Laser-Aided Intelligent ManufacturingUniversity of MichiganAnn ArborUSA
  2. 2.Center for Advanced TechnologiesFocus: HOPEDetroitUSA
  3. 3.Carnegie Mellon UniversityPittsburghUSA
  4. 4.Wayne State UniversityDetroitUSA

Personalised recommendations