Journal of Materials Science

, Volume 49, Issue 3, pp 1179–1192 | Cite as

Optoelectronic and thermoelectric properties of KAuX5 (X = S, Se): a first principles study

  • Wilayat Khan
  • A. H. Reshak


The electronic structure as well as optical and thermoelectric properties of the orthorhombic polychalcogenides of gold KAuX5 (X = S, Se) compounds have been investigated using full-potential linearized augmented plane wave within the framework of the density functional theory (DFT). The local density approximation (LDA), generalized gradient approximation (GGA) by Perdew, Burke and Ernzerhof (PBE), Engel–Vosko generalized gradient approximation (EV-GGA), and the recently modified Becke–Johnson approximation (mBJ) formalism are used for the exchange correlation energy to calculate the total energy. The results show that KAuX5 (X = S, Se) is a direct band gap semiconductor at Γ–Γ point. The total and partial density of states indicate that the states Au-d, S-p, and Se-p of both compounds have strong contributions to valence band in the energy range from −10 up to 0.0 eV. One can notice from electronic charge density that both compounds show greater iconicity and smaller covalency. Optical properties with photon incident energy up to 14.0 eV have been calculated and analyzed. Important transport properties such as Seebeck coefficients as well as thermal and electrical conductivities and effective mass are obtained and discussed in details.


Dielectric Function Thermoelectric Property Generalize Gradient Approximation Seebeck Coefficient Optical Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported from the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant No. 134/2013/Z/104020 of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia.


  1. 1.
    Kanatzidis MG (1990) Chem Mater 2:353CrossRefGoogle Scholar
  2. 2.
    Kanatzidis MG, Sutorik AC (1995) Prog Inorg Chem 43:151CrossRefGoogle Scholar
  3. 3.
    Dittrich H et al (2009) Phys Status Solidi A 206:1034CrossRefADSGoogle Scholar
  4. 4.
    Mehrotra PK, Hofmann R (1978) Inorg Chem 17:2187CrossRefGoogle Scholar
  5. 5.
    Crespo O et al (2007) Chem Eur J 13:235PubMedCrossRefGoogle Scholar
  6. 6.
    Gimeno MC, Laguna A (2006) Comments Inorg Chem 27:127CrossRefGoogle Scholar
  7. 7.
    Yen YW, Liou WK, Chen WC, Chiu CW (2013) J Alloys Compd 574:490CrossRefGoogle Scholar
  8. 8.
    Cui SX, Wei DQ, Zhang QM, Gong ZZ, Hu HQ (2013) J Alloy Compd 574:486CrossRefGoogle Scholar
  9. 9.
    Lin J, Zhou Z, Li Z, Zhang C, Wang X, Wang K, Gao G, Huang P, Cui D (2013) Nanoscale Res Lett 8:170PubMedCrossRefPubMedCentralADSGoogle Scholar
  10. 10.
    Seryotkin YV, Pal’yanova GA, Savva NE (2013) Russ Geol Geophys 54:646CrossRefADSGoogle Scholar
  11. 11.
    Kanatzidis MG, Sutorik AC (1996) Prog Inorg Chem 43:151CrossRefGoogle Scholar
  12. 12.
    Bertholet CL (1803), Essai de Statique Chimique, 2nd Partie, ParisGoogle Scholar
  13. 13.
    Villars P, Cenzual K, Daams J, Gladyshevskii R, Shcherban O, Dubenskyy V, Kuprysyuk V, Pavlyuk O, Savysyuk I, Stoyko S (2009) Landolt-Börnstein Group III Condens Matter 43A7:701CrossRefGoogle Scholar
  14. 14.
    Villars P, Cenzual K, Daams J, Gladyshevskii R, Shcherban O, Dubenskyy V, Melnichenko-Koblyuk N, Pavlyuk O, Stoyko S, Sysa L (2006) Landolt-Börnstein Group III Condens Matter 43A3:1CrossRefGoogle Scholar
  15. 15.
    Bakakin VV (2011) Crystallogr Rep 56(6):970CrossRefADSGoogle Scholar
  16. 16.
    Starodub VA (1999) Usp Khim 68:883Google Scholar
  17. 17.
    Makovicky E (2005) Rev Mineral Geochem 57:403CrossRefGoogle Scholar
  18. 18.
    Younbong P et al (1997) J Alloy Compd 257:137CrossRefGoogle Scholar
  19. 19.
    Hohenberg P, Kohn W (1964) Phys Rev 136:684MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Zerarga F et al (2011) Sol State Sci 13:1638CrossRefADSGoogle Scholar
  22. 22.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865PubMedCrossRefADSGoogle Scholar
  23. 23.
    Yousaf M et al (2012) Chin Phys Lett 29:107401CrossRefGoogle Scholar
  24. 24.
    Tran F, Blaha P (2009) Phys Rev Lett 102:226401PubMedCrossRefADSGoogle Scholar
  25. 25.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Fox M (2001) Optical properties of solids. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Delin A et al (1996) Phys Rev B 54:1673CrossRefADSGoogle Scholar
  28. 28.
    Yu YP, Cardona M (1999) Fundamental of semiconductors physics and materials properties, 2nd edn. Springer, BerlinGoogle Scholar
  29. 29.
    Ziman JM (1964) Principles of the theory of solids. Cambridge University Press, CambridgezbMATHGoogle Scholar
  30. 30.
    Allen PB (1996) In: Chelikowsky JR, Louie SG (eds) Quantum theory of real materials. Klüwer, Boston, pp 219–250Google Scholar
  31. 31.
    Reshak AH, Khan SA (2013) Comput Mater Sci 78:91CrossRefGoogle Scholar
  32. 32.
    Reshak AH, Kamarudin H, Kityk IV, Auluck S (2013) J Mater Sci 48:5157. doi: 10.1007/s10853-013-7301-1 CrossRefADSGoogle Scholar
  33. 33.
    Reshak AH, Khyzhun OY, Kityk IV, Fedorchuk AO, Kamarudin H, Auluck S, Parasyuk OV (2013) Sci Adv Mater 5:1CrossRefGoogle Scholar
  34. 34.
    Reshak AH, Kityk IV, Parasyuk OV, Fedorchuk AO, Alahmaed ZA, Alzayed N, Kamarudin H, Auluck S (2013) J Mater Sci 48:1342. doi: 10.1007/s10853-012-6879-z CrossRefADSGoogle Scholar
  35. 35.
    Reshak AH, Azam S (2013) J Magn Magn Mater 345:294CrossRefADSGoogle Scholar
  36. 36.
    Sakata M (2005) Thermoelectric energy conversion. Shokabu, Tokyo, p 60 (in Japanese). (Cited from Ziman JM (1972) Principles of theory of solids. Cambridge University Press, Cambridge)Google Scholar
  37. 37.
    Penn DR (1962) Phys Rev B 128:2093CrossRefzbMATHADSGoogle Scholar
  38. 38.
    Jianming C et al (2012) J Chem Theory Comput 8:3338CrossRefGoogle Scholar
  39. 39.
    Onoue M, Ishii F, Oguchi T (2008) J Phys Soc Jpn 77:054706CrossRefADSGoogle Scholar
  40. 40.
    Hao L, Lee TK (2010) Phys Rev B 81:165445CrossRefADSGoogle Scholar
  41. 41.
    Yang J, Li H, Wu T, Zhang W, Chen L, Yang J (2008) Adv Funct Mater 18:2880CrossRefGoogle Scholar
  42. 42.
    Ohta S, Nomura T, Ohta H, Koumoto K (2005) Appl Phys Lett 87:092108CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Complex SystemsFFPW, CENAKVA, University of South Bohemia in CBNove HradyCzech Republic
  2. 2.Center of Excellence Geopolymer and Green Technology, School of Material EngineeringUniversity Malaysia PerlisKangarMalaysia

Personalised recommendations