Journal of Materials Science

, Volume 49, Issue 2, pp 886–896 | Cite as

Kinetic model study of moisture sorption–desorption–resorption in triangular-shaped vinyl ester filler/epoxy composites

Article

Abstract

A phenomenological diffusion model was used to study and describe moisture sorption–desorption–resorption kinetics in triangular-shaped vinyl ester filler/epoxy composites at 80 °C. The model was derived to predict the experimental anomalous weight gain behaviors of epoxy composites during moisture sorption and resorption, and estimate the degree of material degradation and loss observed as negative weight change during desorption. To verify the applicability of the model, acid anhydride–cured epoxy composites were prepared at varied alignment (parallel or staggered), spacing (1 or 5 mm), and orientation (pointed or flat) of triangular-shaped vinyl ester fillers. Moisture sorption–desorption–resorption experiment was performed by immersion of specimens in deionized water for 1200 h, followed by vacuum drying for 300 h, and water reimmersion for 300 h. The parameters of the model were calculated from nonlinear regression of percent weight change versus time experimental data. The model was found to be in good agreement with the weight change kinetic curves of all specimens. Results of three-way analysis of variance of model parameters showed the degree of material degradation and moisture diffusion coefficients during sorption, desorption, and resorption to be significantly affected by triangular-shaped filler alignment, spacing, and orientation. Using staggered over parallel alignment and 5-mm over 1-mm spacing decreased material degradation and moisture transport rate during desorption in composites. Increasing the spacing from 1 to 5 mm decreased moisture diffusion during sorption. Orienting the fillers from pointed to flat decreased moisture diffusion during resorption. Effect of interaction of filler spacing and orientation was also found to be statistically significant on the diffusion rate during sorption.

References

  1. 1.
    Moggridge GD, Lape NK, Yang C, Cussler EL (2003) Prog Org Coat 46:231CrossRefGoogle Scholar
  2. 2.
    Lape NK, Nuxoll EE, Cussler EL (2004) J Membr Sci 236:29CrossRefGoogle Scholar
  3. 3.
    Chen X, Papathanasiou TD (2007) J Plast Film Sheet 23:319CrossRefMATHGoogle Scholar
  4. 4.
    Cussler EL (2007) Diffus Fund 6:72Google Scholar
  5. 5.
    Yang C, Smyrl W, Cussler EL (2004) J Membr Sci 231:1CrossRefGoogle Scholar
  6. 6.
    Falla W, Mulski M, Cussler EL (1996) J Membr Sci 119:129CrossRefGoogle Scholar
  7. 7.
    DeRocher J, Gettelfinger B, Wang J, Nuxoll E, Cussler EL (2005) J Membr Sci 254:21CrossRefGoogle Scholar
  8. 8.
    Cussler EL, Hughes S, Ward W, Aris R (1988) J Membr Sci 38:161CrossRefGoogle Scholar
  9. 9.
    Fredrickson G, Bicerano J (1999) J Chem Phys 110:2181CrossRefADSGoogle Scholar
  10. 10.
    Brydges W, Gulati S, Baum G (1975) J Mater Sci 10:2044. doi:10.1007/BF00557482 CrossRefADSGoogle Scholar
  11. 11.
    Swannack C, Cox C, Liakos A, Hirt D (2005) J Membr Sci 263:47CrossRefGoogle Scholar
  12. 12.
    Eitzmann D, Melkote R, Cussler EL (1996) AIChE J 42:2CrossRefGoogle Scholar
  13. 13.
    Ly Y, Cheng Y (1997) J Membr Sci 133:207CrossRefGoogle Scholar
  14. 14.
    White J, Cussler EL (2006) J Membr Sci 278:225CrossRefGoogle Scholar
  15. 15.
    Pajarito BB, Kubouchi M, Tomita H, Sakai T (2012) Mater Sci Technol Jpn 49:32Google Scholar
  16. 16.
    Pajarito BB, Kubouchi M, Sakai T, Aoki S (2012) J Soc Mater Sci Jpn 10:860CrossRefGoogle Scholar
  17. 17.
    Pajarito BB, Kubouchi M, Aoki S (2012) Adv Compos Lett 21:137Google Scholar
  18. 18.
    Lin YC, Chen X (2005) Polymer 46:11994CrossRefGoogle Scholar
  19. 19.
    Fan XJ, Lee SWR, Han Q (2009) Microelectron Reliab 49:861CrossRefGoogle Scholar
  20. 20.
    Yur’ev SV, Lushchik VV (1975) Mater Sci 10:50CrossRefGoogle Scholar
  21. 21.
    Crank J (1975) The mathematics of diffusion. Clarendon, OxfordGoogle Scholar
  22. 22.
    Pomerantsev AL (2005) J Appl Polym Sci 96:1102CrossRefGoogle Scholar
  23. 23.
    Long FA, Richman D (1960) J Am Chem Soc 82:513CrossRefGoogle Scholar
  24. 24.
    Berens AR, Hopfenberg HB (1978) Polymer 19:489CrossRefGoogle Scholar
  25. 25.
    De Wilde WP, Shopov PJ (1994) Compos Struct 27:243CrossRefGoogle Scholar
  26. 26.
    Weitsman YJ, Guo YJ (2002) Compos Sci Technol 62:889CrossRefGoogle Scholar
  27. 27.
    Weitsman YJ (2006) Compos Part A 37:617CrossRefGoogle Scholar
  28. 28.
    Weitsman YJ (2012) Fluid effects in polymers and polymeric composites. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Mubashar A, Ashcroft IA, Critchlow GW, Crocombe AD (2009) J Adhesion 85:711CrossRefGoogle Scholar
  30. 30.
    Lee S, Rockett TJ (1992) Polymer 33:3691CrossRefGoogle Scholar
  31. 31.
    Alvarez V, Vazquez A, de la Osa O (2007) J Compos Mater 41:1275CrossRefGoogle Scholar
  32. 32.
    Lazic ZR (2004) Design of experiments in chemical engineering. WILEY-VCH Verlag GmbH & Co, KGaACrossRefGoogle Scholar
  33. 33.
    Sorrentino A, Tortora M, Vittoria V (2006) J Polym Sci Pol Phys 44:265CrossRefGoogle Scholar
  34. 34.
    Choudalakis G, Gotsis AD (2009) Eur Polym J 45:967CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of the Philippines, DilimanQuezonPhilippines
  2. 2.Department of Chemical EngineeringTokyo Institute of TechnologyMeguro-kuJapan

Personalised recommendations