Journal of Materials Science

, Volume 49, Issue 2, pp 786–793 | Cite as

Low-temperature processing of thin films based on rutile TiO2 nanoparticles for UV photocatalysis and bacteria inactivation

  • Joel Molina
  • Jose Luis Sanchez-Salas
  • Carlos Zuniga
  • Eunice Mendoza
  • Rosalia Cuahtecontzi
  • Gabriela Garcia-Perez
  • Edmundo Gutierrez
  • Erick R. Bandala


Using a low-temperature, simple, and economic processing technique, TiO2 nanoparticles (rutile phase) are immobilized in an inorganic matrix and then deposited on glass for bacteria inactivation in water. Using this low thermal budget method (maximum processing temperature of 220 °C), thin films of immobilized TiO2 nanoparticles are obtained so that practical water decontamination after UV radiation is possible by avoiding the additional step of catalyst separation from treated water. In order to validate the photocatalytic activities of these TiO2 nanoparticles (prepared as thin films), they were tested for bacteria inactivation in water under UV–A radiation (λ > 365 nm), while extensive characterizations by dynamic light scattering, X-ray diffraction, ultra violet–visible absorption spectroscopy, fourier-transform infra red spectroscopy, and profilometry were also carried out. Despite previous reports on the low or lack of photocatalytic activity of rutile-phase TiO2, inactivation of Escherichia coli in water was observed when thin films of this material were used when compared with the application of UV radiation alone. Physical characterization of the films suggests that size and concentration-related effects may allow the existence of photocatalytic activity for rutile-TiO2 as long as they are exposed under UV–A radiation, whereas no effect on bacteria inactivation was observed for thin films in the absence of TiO2 or radiation. In brief, a low thermal budget process applied to thin films based on TiO2 nanoparticles has shown to be useful for bacteria inactivation, while possible application of these films on widely available substrates like polyethylene terephthalate materials is expected.


TiO2 Rutile Photocatalytic Activity TiO2 Nanoparticles TiO2 Film 



J. Molina thanks Alfredo Morales S. (Centro de Investigacion en Materiales Avanzados, CIMAV) for the latter's support on XRD measurements. This study was fully supported by the National Council of Science and Technology (CONACYT-Mexico).


  1. 1.
    Qu X, Alvarez PJJ, Li Q (2013) Water Res 47(12):3931PubMedCrossRefGoogle Scholar
  2. 2.
    Chong MN, Jin B, Chow CWK, Saint C (2010) Water Res 44(10):2997PubMedCrossRefGoogle Scholar
  3. 3.
    Dey T (ed) (2012) Nanotechnology for water purification. Brown Walker Press, Boca RatonGoogle Scholar
  4. 4.
    Banerjee AN (2011) Nanotechnol Sci Appl 4(1):35PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Nakata K, Fujishima A (2012) J Photochem Photobiol C 13(3):169Google Scholar
  6. 6.
    Ding Z, Lu GQ, Greenfield PF (2000) J Phys Chem B 104(19):4815CrossRefGoogle Scholar
  7. 7.
    Kandiel TA, Dillert R, Feldhoff A, Bahnemann DW (2010) J Phys Chem C 114(11):4909CrossRefGoogle Scholar
  8. 8.
    Behnajady MA, Modirshahla N, Shokri M, Rad b (2008) Glob NEST J 10(1):1Google Scholar
  9. 9.
    Kim DH, Choi DK, Kim SJ, Lee KS (2008) Catal Commun 9(5):654CrossRefGoogle Scholar
  10. 10.
    He J, Liu Q, Sun Z, Yan W, Zhang G, Qi Z, Xu P, Wu Z, Wei S (2010) J Phys Chem C 114(13):6035CrossRefGoogle Scholar
  11. 11.
    Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT (2004) J Phys Chem B 108(1):52Google Scholar
  12. 12.
    Valentin CD, Pacchion G, Selloni A (2004) Phys Rev B 70(8):085116CrossRefADSGoogle Scholar
  13. 13.
    Hsu SW, Yang TS, Chen TK, Wong MS (2007) Thin Solid Films 515(7–8):3521CrossRefADSGoogle Scholar
  14. 14.
    Molina J, Munoz AL, Torres A, Landa M, Alarcon P, Escobar M (2011) Mater Sci Eng B 176(17):1353CrossRefGoogle Scholar
  15. 15.
    Tauc J (1968) Mater Res Bull 3(1):37CrossRefGoogle Scholar
  16. 16.
    Pankove JI (ed) (1984) Semiconductors and semimetals, part B optical properties, chap 2: the optical absorption edge of a-Si: H. Academic Press, New York, p 11Google Scholar
  17. 17.
    Music S, Vincekovic NF, Sekovanic L (2011) Braz J Chem Eng 28(1):89Google Scholar
  18. 18.
    Lopez T, Sanchez E, Bosch P, Meas Y, Gomez R (1992) Mater Chem Phys 32(2):141Google Scholar
  19. 19.
    Murashkevich AN, Lavistkaya AS, Barannikova TI, Zharskii IM (2008) J Appl Spectrosc 75(5):730CrossRefADSGoogle Scholar
  20. 20.
    Goldstein DN, McCormick JA, George SM (2008) J Phys Chem C 112(49):19530CrossRefGoogle Scholar
  21. 21.
    Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J (2001) J Catal 202(2):413CrossRefGoogle Scholar
  22. 22.
    Swanepoel R (1983) J Phys E 16(1):1214MathSciNetADSGoogle Scholar
  23. 23.
    Sreemany M, Sen S (2004) Mater Chem Phys 83(1):169Google Scholar
  24. 24.
    Dharma J, Pisal A (2012) Simple method of measurement the band gap energy value of TiO2 in the powder form using UV/Vis/NIR spectrometer. Application Note. PerkinElmer Inc., SheltonGoogle Scholar
  25. 25.
    Valencia S, Marin JM, Restrepo G (2010) Open Mater Sci J 4(1):9Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Joel Molina
    • 1
  • Jose Luis Sanchez-Salas
    • 2
  • Carlos Zuniga
    • 1
  • Eunice Mendoza
    • 2
  • Rosalia Cuahtecontzi
    • 2
  • Gabriela Garcia-Perez
    • 2
  • Edmundo Gutierrez
    • 1
  • Erick R. Bandala
    • 2
  1. 1.Electronics DepartmentNational Institute of Astrophysics, Optics and Electronics (INAOE)Sta. Maria TonantzintlaMexico
  2. 2.Grupo de Investigacion En Energia y AmbienteUniversidad de las Americas, Puebla (UDLAP)CholulaMexico

Personalised recommendations