Journal of Materials Science

, Volume 49, Issue 2, pp 648–653 | Cite as

Finite element modelling of the mechanics of discrete carbon nanotubes filled with ZnS and comparison with experimental observations

  • A. O. Monteiro
  • P. M. F. J. CostaEmail author
  • P. B. Cachim


The mechanical response to a uniaxial compressive force of a single carbon nanotube (CNT) filled (or partially-filled) with ZnS has been modelled. A semi-empirical approach based on the finite element method was used whereby modelling outcomes were closely matched to experimental observations. This is the first example of the use of the continuum approach to model the mechanical behaviour of discrete filled CNTs. In contrast to more computationally demanding methods such as density functional theory or molecular dynamics, our approach provides a viable and expedite alternative to model the mechanics of filled multi-walled CNTs.


Carbon Shell Finite Element Analysis Simulation Turbostratic Carbon Computer Assisted Design Coating Carbon Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from the COMPETE-FEDER program and FCT to the project PTDC/EME-PME/112073/2009 and PEst-C/CTM/LA0011/2011 which allowed us to achieve this work.

Supplementary material

Supplementary material 1 (WMV 3677 kb)

Supplementary material 2 (WMV 4013 kb)


  1. 1.
    Iijima S (1991) Nature 354(6348):56CrossRefADSGoogle Scholar
  2. 2.
    Monthioux M (ed) (2012) Carbon meta-nanotubes. Wiley-Blackwell, ChichesterGoogle Scholar
  3. 3.
    Ajayan PM, lijima S (1993) Nature 361(6410):333CrossRefADSGoogle Scholar
  4. 4.
    Liu Z et al (2008) Cancer Res 68(16):6652PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Cho K et al (2008) Clin Cancer Res 14(5):1310PubMedCrossRefGoogle Scholar
  6. 6.
    Ilie A et al (2007) Appl Phys Lett 91(25):253124CrossRefADSGoogle Scholar
  7. 7.
    Dillon AC et al (1997) Nature 386(6623):377CrossRefADSGoogle Scholar
  8. 8.
    Mani RC et al (2003) Nano Lett 3(5):671CrossRefADSGoogle Scholar
  9. 9.
    Svensson K, Olin H, Olsson E (2004) Phys Rev Lett 93(14):145901PubMedCrossRefADSGoogle Scholar
  10. 10.
    Costa PMFJ et al (2011) Carbon 49(12):3747CrossRefGoogle Scholar
  11. 11.
    Loffler M et al (2011) Ultramicroscopy 111(2):155PubMedCrossRefGoogle Scholar
  12. 12.
    Costa PMFJ et al (2009) Carbon 47:541CrossRefGoogle Scholar
  13. 13.
    Costa PMFJ et al (2009) Nanotechnology 20(40):405706PubMedCrossRefADSGoogle Scholar
  14. 14.
    Costa PMFJ et al (2009) Nanotechnology 20(40):405707PubMedCrossRefADSGoogle Scholar
  15. 15.
    Jaroenapibal P et al (2005) J Appl Phys 98(4):1Google Scholar
  16. 16.
    Monteiro AO, Cachim PB, Costa PMFJ (2012) Mechanics of filled carbon nanotubes (submitted)Google Scholar
  17. 17.
    Costa PMFJ et al (2011) Carbon 49(1):342CrossRefGoogle Scholar
  18. 18.
    Goris B et al (2012) Nat Mater 11(11):930PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. O. Monteiro
    • 1
    • 2
  • P. M. F. J. Costa
    • 1
    • 3
    • 4
    Email author
  • P. B. Cachim
    • 1
    • 2
    • 5
  1. 1.CICECOUniversity of AveiroAveiroPortugal
  2. 2.Department of Civil EngineeringUniversity of AveiroAveiroPortugal
  3. 3.Department of Materials and Ceramics EngineeringUniversity of AveiroAveiroPortugal
  4. 4.Physical Sciences and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  5. 5.LABEST, DECivilUniversity of AveiroAveiroPortugal

Personalised recommendations