Skip to main content
Log in

Roles of alloying additions on local structure and glass-forming ability of Cu–Zr metallic glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To identify the structural role of alloying element M (M = Ti, Ga, Co, Fe) on the glass-forming ability (GFA) of Cu50Zr50 base alloy, the atomic structures of the binary and ternary metallic glasses were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS curve-fitting analysis indicates that the main structural difference among the metallic glasses is in the atomic packing density of Cu-centered clusters. The relative shortening of the Cu–M distance is closely related to the heat of mixing between Cu and M: the more negative the heat of mixing, the larger is the shortening of the Cu–M distance. Based on a systematic analysis of the component properties and GFA data for Cu–Zr based alloys, it is suggested that alloying elements that bring a more uniform distribution of atomic size and possess strong chemical interactions with the main components should be selected in developing large-size bulk metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu ZP, Liu CT (2004) J Mater Sci 39:3965. doi:10.1023_B_JMSC.0000031478.73621.64

    Article  CAS  ADS  Google Scholar 

  2. Wang WH (2007) Prog Mater Sci 52:540

    Article  CAS  Google Scholar 

  3. Xu Y, Wang Y, Liu X, Chen G, Zhang Y (2009) J Mater Sci 44:3861. doi:10.1007/s10853-009-3511-y

    Article  CAS  ADS  Google Scholar 

  4. Zhou W, Kong LT, Li JF, Zhou YH (2012) J Mater Sci 47:4996. doi:10.1007/s10853-012-6375-5

    Article  CAS  ADS  Google Scholar 

  5. Lu ZP, Liu CT, Thompson JR, Porter WD (2004) Phys Rev Lett 92:245503

    Article  PubMed  CAS  ADS  Google Scholar 

  6. Xu DH, Duan G, Johnson WL (2004) Phys Rev Lett 92:245504

    Article  PubMed  ADS  Google Scholar 

  7. Ma D, Cao H, Ding L, Chang YA, Hsieh KC, Pan Y (2005) Appl Phys Lett 87:171914

    Article  ADS  Google Scholar 

  8. Zhang W, Jia F, Zhang Q, Inoue A (2007) Mater Sci Eng, A 459:330

    Article  Google Scholar 

  9. Jiang QK, Wang XD, Nie XP, Zhang GQ, Ma H, Fecht HJ, Bednarcik J, Franz H, Liu YG, Cao QP, Jiang JZ (2008) Acta Mater 56:1785

    Article  CAS  Google Scholar 

  10. Hua N, Pang S, Li Y, Wang J, Li R, Georgarakis K, Yavari AR, Vaughan G, Zhang T (2011) J Mater Res 26:539

    Article  CAS  Google Scholar 

  11. Turnbull D (1969) Contemp Phys 10:473

    Article  CAS  ADS  Google Scholar 

  12. Inoue A (2000) Acta Mater 48:279

    Article  CAS  Google Scholar 

  13. Cheng YQ, Ma E (2011) Prog Mater Sci 56:379

    Article  MathSciNet  CAS  Google Scholar 

  14. Gilbert CJ, Ritchie RO, Johnson WL (1997) Appl Phys Lett 71:476

    Article  CAS  ADS  Google Scholar 

  15. Kawashima A, Kurishita H, Kimura H, Zhang T, Inoue A (2005) Mater Trans 46:1725

    Article  CAS  Google Scholar 

  16. He Q, Cheng YQ, Ma E, Xu J (2011) Acta Mater 59:202

    Article  CAS  Google Scholar 

  17. Wang X, Cao QP, Chen YM, Hono K, Zhong C, Jiang QK, Nie XP, Chen LY, Wang XD, Jiang JZ (2011) Acta Mater 59:1037

    Article  CAS  Google Scholar 

  18. Park ES, Chang HJ, Kim DH (2008) Acta Mater 56:3120

    Article  CAS  Google Scholar 

  19. Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen MW (2009) Phys Rev Lett 103:075502

    Article  PubMed  CAS  ADS  Google Scholar 

  20. Antonowicz J, Pietnoczka A, Zalewski W, Bacewicz R, Stoica M, Georgarakis K, Yavari AR (2011) J Alloys Comp 509:S34

    Article  CAS  Google Scholar 

  21. Tang MB, Zhao DQ, Pan MX, Wang WH (2004) Chin Phys Lett 21:901

    Article  CAS  ADS  Google Scholar 

  22. Li Y, Guo Q, Kalb JA, Thompson CV (2008) Science 322:1816

    Article  PubMed  CAS  ADS  Google Scholar 

  23. Lu BF, Li JF, Kong LT, Zhou YH (2011) Intermetallics 19:1032

    Article  CAS  Google Scholar 

  24. Senkov ON, Miracle DB (2001) Mater Res Bull 36:2183

    Article  CAS  Google Scholar 

  25. Wang D, Tan H, Li Y (2005) Acta Mater 53:2969

    Article  CAS  Google Scholar 

  26. Duan G, De Blauwe K, Lind ML, Schramm JP, Johnson WL (2008) Scripta Mater 58:159

    Article  CAS  Google Scholar 

  27. Yu HB, Wang WH, Bai HY (2010) Appl Phys Lett 96:081902

    Article  ADS  Google Scholar 

  28. Zhang Y, Mattern N, Eckert J (2012) J Alloys Comp 514:141

    Article  CAS  Google Scholar 

  29. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  PubMed  CAS  Google Scholar 

  30. Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621

    Article  CAS  ADS  Google Scholar 

  31. Sha ZD, Xu B, Shen L, Zhang AH, Feng YP, Li Y (2010) J Appl Phys 107:063508

    Article  ADS  Google Scholar 

  32. Ma D, Stoica AD, Wang XL, Lu ZP, Xu M, Kramer M (2009) Phys Rev B 80:014202

    Article  ADS  Google Scholar 

  33. Cheng YQ, Sheng HW, Ma E (2008) Phys Rev B 78:014207

    Article  ADS  Google Scholar 

  34. Ikeda T, Matsubara E, Waseda Y, Inoue A, Chang T, Masumoto T (1995) Mater Trans 36:1093

    CAS  Google Scholar 

  35. Hui X, Liu X, Gao R, Hou H, Fang H, Liu Z, Chen G (2008) Sci China, Ser G 51:400

    Article  CAS  Google Scholar 

  36. Huang L, Wang CZ, Hao SG, Kramer MJ, Ho KM (2010) Phys Rev B 81:014108

    Article  ADS  Google Scholar 

  37. Kaban I, Jovari P, Stoica M, Mattern N, Eckert J, Hoyer W, Beuneu B (2010) J Phys Condens Mat 22:404208

    Article  CAS  Google Scholar 

  38. Machado KD, Maciel GA, Sanchez DF, de Lima JC, Jovari P (2010) Solid State Commun 150:1674

    Article  CAS  ADS  Google Scholar 

  39. Mechler S, Schumacher G, Koteski V, Riesemeier H, Schaefers F, Mahnke HE (2010) Appl Phys Lett 97:041914

    Article  ADS  Google Scholar 

  40. He D, Ekere NN, Cai L (1999) Phys Rev E 60:7098

    Article  CAS  ADS  Google Scholar 

  41. Guo FQ, Poon SJ, Shiflet GJ (2005) J Appl Phys 97:013512

    Article  ADS  Google Scholar 

  42. Wang HR (2002) J Alloys Comp 347:101

    Article  CAS  Google Scholar 

  43. Duan G, Lind ML, De Blauwe K, Wiest A, Johnson WL (2007) Appl Phys Lett 90:211901

    Article  ADS  Google Scholar 

  44. Inoue A, Zhang T (1996) Mater Trans 37:185

    CAS  Google Scholar 

  45. Zhang QS, Zhang W, Inoue A (2009) Scripta Mater 61:241

    Article  CAS  Google Scholar 

  46. Zhang W, Zhang Q, Qin C, Inoue A (2008) Mater Sci Eng, B 148:92

    Article  CAS  Google Scholar 

  47. Kim YC, Lee JC, Cha PR, Ahn JP, Fleury E (2006) Mater Sci Eng, A 437:248

    Article  Google Scholar 

  48. Peker A, Johnson WL (1993) Appl Phys Lett 63:2342

    Article  ADS  Google Scholar 

  49. Busch R, Kim YJ, Johnson WL (1995) J Appl Phys 77:4039

    Article  CAS  ADS  Google Scholar 

  50. Lou HB, Wang XD, Xu F, Ding SQ, Cao QP, Hono K, Jiang JZ (2011) Appl Phys Lett 99:051910

    Article  ADS  Google Scholar 

  51. Cheng YQ, Ma E, Sheng HW (2009) Phys Rev Lett 102:245501

    Article  PubMed  CAS  ADS  Google Scholar 

  52. Wang CC, Wong CH (2012) J Alloys Comp 510:107

    Article  CAS  Google Scholar 

  53. Takeuchi A, Inoue A (2005) Mater Trans 46:2817

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Shanghai Synchrotron Radiation Facility in Shanghai for the use of the synchrotron radiation facilities (Grants No. 10sr0345 and 11sr0250). Financial supports from the National Natural Science Foundation of China (Grants No. 51071103 and 50831003) and the National Basic Research Program of China (Grant No. 2011CB610405) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, B.F., Kong, L.T., Jiang, Z. et al. Roles of alloying additions on local structure and glass-forming ability of Cu–Zr metallic glasses. J Mater Sci 49, 496–503 (2014). https://doi.org/10.1007/s10853-013-7725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7725-7

Keywords

Navigation