Journal of Materials Science

, Volume 49, Issue 1, pp 403–406 | Cite as

A simple methodology to visualize crack propagation for ceramic materials

  • J. MalzbenderEmail author
  • E. Skiera
  • J. Mönch


Analysis of the crack growth behavior is critical for fracture and thermal shock assessment. The current work presents a simple methodology to visualize cracks in ceramic materials. The procedure is exemplified for refractory materials on the basis of images obtained during mechanical loading using a wedge splitting test. Complementary in situ crack growth observation verify that for one of the materials growth and opening displacement of the main crack is accompanied by pronounced micro-cracking, branching, and bridging processes. Apparent fracture resistance and thermal shock resistance parameters are discussed.


Crack Path Crack Growth Behavior Zirconia Additive Crack Extension Resistance Wedge Splitting Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank S. Dudczig and Prof. C.G. Aneziris (TU Freiberg) for making the refractory materials available and Dr. E. Wessel for his most valuable contribution to the controlled crack propagation studies in the SEM. The funding of the present work by the German Research Association (DFG) under the DFG grant SPP 1418 is gratefully acknowledged.


  1. 1.
    Hasselman DPH (1969) J Am Ceram Soc 52:600CrossRefGoogle Scholar
  2. 2.
    Bradt RC (1988) Am Ceram Soc Bull 67:1176Google Scholar
  3. 3.
    Tokariev O, Schnetter L, Beck T, Malzbender J (2013) J Euro Ceram Soc 33:749CrossRefGoogle Scholar
  4. 4.
    Aneziris CG, Dudczig S, Gerlach N, Bereck H, Veres D (2010) Adv Eng Mater 12:478–485CrossRefGoogle Scholar
  5. 5.
    Harmuth H, Rieder K, Krobath M, Tschegg EK (1996) Mater Sci Eng, A 214:53CrossRefGoogle Scholar
  6. 6.
    Brühwiler E, Wittmann EH (1990) Eng Frac Mech 35:117–125CrossRefGoogle Scholar
  7. 7.
    Wakui T, Malzbender J, Steinbrech RW (2004) J Thermal Spray Technol 13:390–395CrossRefADSGoogle Scholar
  8. 8.
    Wakui T, Malzbender J, Steinbrech RW (2006) Surf Coat Technol 200:4995CrossRefGoogle Scholar
  9. 9.
    Malzbender J, de With G (2001) Surf Coat Technol 137:72CrossRefGoogle Scholar
  10. 10.
    Stock SR (2008) Int Mater Rev 53:129CrossRefGoogle Scholar
  11. 11.
    Skiera E, Malzbender J, Mönch J, Dudczig S, Aneziris CG, Steinbrech RW (2012) Adv Eng Mater 14:248–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations