Journal of Materials Science

, Volume 49, Issue 2, pp 463–480 | Cite as

A review: carbon nanofibers from electrospun polyacrylonitrile and their applications

  • Lifeng ZhangEmail author
  • Alex Aboagye
  • Ajit Kelkar
  • Chuilin Lai
  • Hao FongEmail author


Carbon nanofibers with diameters that fall into submicron and nanometer range have attracted growing attention in recent years due to their superior chemical, electrical, and mechanical properties in combination with their unique 1D nanostructures. Unlike catalytic synthesis, electrospinning polyacrylonitrile (PAN) followed by stabilization and carbonization has become a straightforward and convenient route to make continuous carbon nanofibers. This paper is a comprehensive and state-of-the-art review of the latest advances made in development and application of electrospun PAN-based carbon nanofibers. Our goal is to demonstrate an objective and overall picture of current research work on both functional carbon nanofibers and high-strength carbon nanofibers from the viewpoint of a materials scientist. Strategies to make a variety of carbon nanofibrous materials for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications as well as attempts to achieve high-strength carbon nanofibers are addressed.


Carbon Fiber Oxygen Reduction Reaction Microbial Fuel Cell Carbon Nanofibers Composite Nanofibers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rebouillat S, Peng JCM, Donnet J-B, Ryu S-K (1998) In: Donnet J-B, Wang TK, Rebouillat S, Peng JCM (eds) Carbon fibers, 3rd edn. Marcel Dekker, New York, pp 463–542Google Scholar
  2. 2.
    Morgan P (2005) Carbon fibers and their composites. CRC Press (Taylor & Francis Group), Boca RatonCrossRefGoogle Scholar
  3. 3.
    Yusof N, Ismail AF (2012) J Anal Appl Pyrol 93:1CrossRefGoogle Scholar
  4. 4.
    Wu J, Chung DDL (2002) Carbon 40:445CrossRefGoogle Scholar
  5. 5.
    Rodriguez NM (1993) J Mater Res 8:3233ADSCrossRefGoogle Scholar
  6. 6.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) Compos Sci Technol 67:1709CrossRefGoogle Scholar
  7. 7.
    Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stab 92:1421CrossRefGoogle Scholar
  8. 8.
    Jong KPD, Geus JW (2000) Catal Rev: Sci Eng 42:481CrossRefGoogle Scholar
  9. 9.
    Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337CrossRefGoogle Scholar
  10. 10.
    Zou G, Zhang D, Dong C, Li H, Xiong K (2006) Carbon 44:828CrossRefGoogle Scholar
  11. 11.
    Chun I, Reneker DH, Fong H, Fang X, Deitzel J, Beck Tan N, Kearns K (1999) J Adv Mater 31:36Google Scholar
  12. 12.
    Fong H, Reneker DH (2001) In: Salem DR (ed) Structure formation in polymeric fibers. Hanser Gardner Publications, Cincinnati, pp 225–246Google Scholar
  13. 13.
    Nataraj SK, Yang KS, Aminabhavi TM (2012) Prog Polym Sci 37:487CrossRefGoogle Scholar
  14. 14.
    Inagaki M, Yang Y, Kang F (2012) Adv Mater 24:2547PubMedCrossRefGoogle Scholar
  15. 15.
    Qin X-H, Wan Y-Q, He J-H, Zhang J, Yu J-Y, Wang S-Y (2004) Polymer 45:6409CrossRefGoogle Scholar
  16. 16.
    Kalayci VE, Patra PK, Kim YK, Ugbolue SC, Warner SB (2005) Polymer 46:7191CrossRefGoogle Scholar
  17. 17.
    Zhang L, Hsieh Y-L (2006) Nanotechnology 17:4416ADSCrossRefGoogle Scholar
  18. 18.
    Kirecci A, Ozkoc U, Icoglu HI (2012) J Appl Polym Sci 124:4961Google Scholar
  19. 19.
    Yarin AL, Koombhongse S, Reneker DH (2001) J Appl Phys 90:4836ADSCrossRefGoogle Scholar
  20. 20.
    Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Polymer 42:9955CrossRefGoogle Scholar
  21. 21.
    Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) J Appl Phys 87:4531ADSCrossRefGoogle Scholar
  22. 22.
    Shin Y, Hohman M, Brenner M, Rutledge G (2001) Appl Phys Lett 78:1149ADSCrossRefGoogle Scholar
  23. 23.
    Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Phys Fluids 13:2201MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Zussman E, Rittel D, Yarin AL (2003) Appl Phys Lett 82:3958ADSCrossRefGoogle Scholar
  25. 25.
    Zhang H, Nie H, Yu D, Wu C, Zhang Y, White CJB, Zhu L (2010) Desalination 256:141CrossRefGoogle Scholar
  26. 26.
    Zhang L, Luo J, Menkhaus TJ, Varadaraju H, Sun Y, Fong H (2011) J Membr Sci 369:499CrossRefGoogle Scholar
  27. 27.
    Guo Z, Shao C, Mu J, Zhang M, Zhang Z, Zhang P, Chen B, Liu Y (2011) Catal Commun 12:880CrossRefGoogle Scholar
  28. 28.
    Li Y, Quan J, Branford-White C, Williams GR, Wu J-X, Zhu L-M (2012) J Mol Catal B 76:15CrossRefGoogle Scholar
  29. 29.
    Wang Y, Serrano S, Santiago-Aviles JJ (2003) Synth Met 138:423CrossRefGoogle Scholar
  30. 30.
    Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G, Li C, Willis P (2003) Adv Mater 15:1161CrossRefGoogle Scholar
  31. 31.
    Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Chem Mater 17:967CrossRefGoogle Scholar
  32. 32.
    Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Carbon 43:2175CrossRefGoogle Scholar
  33. 33.
    Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Adv Funct Mater 16:2393CrossRefGoogle Scholar
  34. 34.
    Wu M, Wang Q, Li K, Wu Y, Liu H (2012) Polym Degrad Stab 97:1511CrossRefGoogle Scholar
  35. 35.
    Zhang L, Hsieh Y-L (2009) Eur Polymer J 45:47zbMATHCrossRefGoogle Scholar
  36. 36.
    Liu J, Yue Z, Fong H (2009) Small 5:536PubMedCrossRefGoogle Scholar
  37. 37.
    Liu C, Li F, Ma L-P, Cheng H-M (2010) Adv Mater 22:E28PubMedCrossRefGoogle Scholar
  38. 38.
    Liu X-M, Huang ZD, Oh SW, Zhang B, Ma P-C, Yuen MMF, Kim J-K (2012) Compos Sci Technol 72:121CrossRefGoogle Scholar
  39. 39.
    Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nano Energy 1:195CrossRefGoogle Scholar
  40. 40.
    Hedin N, Sobolev V, Zhang L, Zhu Z, Fong H (2011) J Mater Sci 46:6453. doi: 10.1007/s10853-011-5725-z ADSCrossRefGoogle Scholar
  41. 41.
    Kumar PS, Sahay R, Aravindan V, Sundaramurthy J, Ling WC, Thavasi V, Mhaisalkar SG, Madhavi S, Ramakrishna S (2012) J Phys D 45:265302ADSCrossRefGoogle Scholar
  42. 42.
    Ji L, Yao Y, Toprakci O, Lin Z, Liang Y, Shi Q, Medford AJ, Millns CR, Zhang X (2010) J Power Sources 195:2050CrossRefGoogle Scholar
  43. 43.
    Chen Y, Lu Z, Zhou L, Mai Y-W, Huang H (2012) Nanoscale 4:6800PubMedADSCrossRefGoogle Scholar
  44. 44.
    Li Y, Guo B, Ji L, Lin Z, Xu G, Liang Y, Zhang S, Toprakci O, Hu Y, Alcoutlabi M, Zhang X (2013) Carbon 51:185CrossRefGoogle Scholar
  45. 45.
    Zhang W-J (2011) J Power Sources 196:13CrossRefGoogle Scholar
  46. 46.
    Yu Y, Yang Q, Teng D, Yang X, Ryu S (2010) Electrochem Commun 12:1187CrossRefGoogle Scholar
  47. 47.
    Bonino CA, Ji L, Lin Z, Toprakci O, Zhang X, Khan SA (2011) ACS Appl Mater Interfaces 3:2534PubMedCrossRefGoogle Scholar
  48. 48.
    Kim D, Lee D, Kim J, Moon J (2012) ACS Appl Mater Interfaces 4:5408PubMedCrossRefGoogle Scholar
  49. 49.
    Ji L, Lin Z, Alcoutlabi M, Toprakci O, Yao Y, Xu G, Li S, Zhang X (2012) RSC Adv 2:192CrossRefGoogle Scholar
  50. 50.
    Wang B, Cheng J, Wu Y, Wang D, He D (2013) J Mater Chem A 1:1368CrossRefGoogle Scholar
  51. 51.
    Yang Z, Du G, Meng Q, Guo Z, Yu X, Chen Z, Guo T, Zeng R (2012) J Mater Chem 22:5848CrossRefGoogle Scholar
  52. 52.
    Ji L, Toprakci O, Alcoutlabi M, Yao Y, Li Y, Zhang S, Guo B, Lin Z, Zhang X (2012) ACS Appl Mater Interfaces 4:2672PubMedCrossRefGoogle Scholar
  53. 53.
    Yang G, Li Y, Ji H, Wang H, Gao P, Wang L, Liu H, Pinto J, Jiang X (2012) J Power Source 216:353CrossRefGoogle Scholar
  54. 54.
    Zhang S, Lin Z, Ji L, Li Y, Xu G, Xue L, Li S, Lu Y, Toprakci O, Zhang X (2012) J Mater Chem 22:14661CrossRefGoogle Scholar
  55. 55.
    Zhang S, Li Y, Xu G, Li S, Lu Y, Toprakci O, Zhang X (2012) Source 213:10CrossRefGoogle Scholar
  56. 56.
    Dimesso L, Spanheimer C, Jaegermann W, Zhang Y, Yarin AL (2012) J Appl Phys 111:064307ADSCrossRefGoogle Scholar
  57. 57.
    Toprakci O, Toprakci HAK, Ji L, Lin Z, Gu R, Zhang X (2012) J Renew Sustain Energy 4:013121CrossRefGoogle Scholar
  58. 58.
    Zhang S, Lu Y, Xu G, Li Y, Zhang X (2012) J Phys D 45:395301ADSCrossRefGoogle Scholar
  59. 59.
    Kim B-H, Yang KS, Bang YH, Kim SR (2011) Mater Lett 65:3479CrossRefGoogle Scholar
  60. 60.
    Kim B-H, Yang KS, Woo H-G (2011) Electrochem Commun 13:1042CrossRefGoogle Scholar
  61. 61.
    Kim B-H, Yang KS, Woo H-G, Oshida K (2011) Synth Met 161:1211CrossRefGoogle Scholar
  62. 62.
    Kim B-H, Kim CH, Yang KS, Rahy A, Yang DJ (2012) Electrochim Acta 83:335CrossRefGoogle Scholar
  63. 63.
    Kim B-H, Yang KS, Woo H-G (2013) Mater Lett 93:190CrossRefGoogle Scholar
  64. 64.
    Zhou Z, Wu X-F (2013) J Power Source 222:410MathSciNetCrossRefGoogle Scholar
  65. 65.
    Kim B-H, Yang KS, Ferraris JP (2012) Electrochim Acta 75:325CrossRefGoogle Scholar
  66. 66.
    Kim SY, Kim B-H, Yang KS, Oshida K (2012) Mater Lett 87:157CrossRefGoogle Scholar
  67. 67.
    Niu H, Zhang J, Xie Z, Wang X, Lin T (2011) Carbon 49:2380CrossRefGoogle Scholar
  68. 68.
    Jung K-H, Deng W, Smith DW Jr, Ferraris JP (2012) Electrochem Commun 23:149CrossRefGoogle Scholar
  69. 69.
    Xie Y, Joshi P, Darling SB, Chen Q, Zhang T, Galipeau D, Qiao Q (2010) J Phys Chem C 114:17880CrossRefGoogle Scholar
  70. 70.
    Hsieh C-T, Yang B-H, Lin J-Y (2011) Carbon 49:3092CrossRefGoogle Scholar
  71. 71.
    Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) ACS Appl Mater Interfaces 2:3572PubMedCrossRefGoogle Scholar
  72. 72.
    Poudel P, Zhang L, Joshi P, Venkatesan S, Fong H, Qiao Q (2012) Nanoscale 4:4726PubMedADSCrossRefGoogle Scholar
  73. 73.
    Park S-H, Jung H-R, Kim B-K, Lee W-J (2012) J Photochem Photobiol A 246:45CrossRefGoogle Scholar
  74. 74.
    Che A-F, Germain V, Cretin M, Cornu D, Innocent C, Tingry S (2011) New J Chem 35:2848CrossRefGoogle Scholar
  75. 75.
    Wang M-X, Huang Z-H, Shimohara T, Kang F, Liang K (2011) Chem Eng J 170:505CrossRefGoogle Scholar
  76. 76.
    Wang M-X, Huang Z-H, Shen K, Kang F, Liang K (2013) Catal Today 201:109CrossRefGoogle Scholar
  77. 77.
    Qiu Y, Yu J, Shi T, Zhou X, Bai X, Huang JY (2011) J Power Sources 196:9862CrossRefGoogle Scholar
  78. 78.
    Yin J, Qiu Y, Yu J (2013) Electrochem Commun 30:1ADSCrossRefGoogle Scholar
  79. 79.
    Jeong B, Uhm S, Lee J (2010) ECS Trans 33:1757CrossRefGoogle Scholar
  80. 80.
    Patil SA, Chigome S, Hagerhall C, Torto N, Gorton L (2013) Bioresour Technol 132:121PubMedCrossRefGoogle Scholar
  81. 81.
    Lin Z, Ji L, Medford AJ, Shi Q, Krause WE, Zhang X (2011) J Solid State Electrochem 15:1287CrossRefGoogle Scholar
  82. 82.
    Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) Nanoscale 3:3357PubMedADSCrossRefGoogle Scholar
  83. 83.
    Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y (2011) ACS Appl Mater Interfaces 3:590PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang M, Shao C, Mu J, Huang X, Zhang Z, Guo Z, Zhang P, Liu Y (2012) J Mater Chem 22:577CrossRefGoogle Scholar
  85. 85.
    Mu J, Shao C, Guo Z, Zhang M, Zhang Z, Zhang P, Chen B, Liu Y (2012) J Mater Chem 22:1786CrossRefGoogle Scholar
  86. 86.
    Huang J, Liu Y, You T (2010) Anal Methods 2:202CrossRefGoogle Scholar
  87. 87.
    Mao X, Simeon F, Rutledge GC, Hatton TA (2013) Adv Mater 25:1309PubMedCrossRefGoogle Scholar
  88. 88.
    Tang X, Liu Y, Hou H, You T (2010) Talanta 80:2182PubMedCrossRefGoogle Scholar
  89. 89.
    Tang X, Liu Y, Hou H, You T (2011) Talanta 83:1410PubMedCrossRefGoogle Scholar
  90. 90.
    Guo Q, Huang J, Chen P, Liu Y, Hou H, You T (2012) Sens Actuators B 163:179CrossRefGoogle Scholar
  91. 91.
    Cui K, Song Y, Guo Q, Xu F, Zhang Y, Shi Y, Wang L, Hou H, Li Z (2011) Sens Actuators B 160:435CrossRefGoogle Scholar
  92. 92.
    Wang L, Ye Y, Zhu H, Song Y, He S, Xu F, Hou H (2012) Nanotechnology 23:455502PubMedCrossRefGoogle Scholar
  93. 93.
    Huang J, Liu Y, Hou H, You T (2008) Biosens Bioelectron 24:632PubMedCrossRefGoogle Scholar
  94. 94.
    Hu G, Zhou Z, Guo Y, Hou H, Shao S (2010) Electrochem Commun 12:422CrossRefGoogle Scholar
  95. 95.
    Song Y, He Z, Xu F, Hou H, Wang L (2012) Sens Actuators B 166–167:357CrossRefGoogle Scholar
  96. 96.
    Liu Y, Wang D, Xu L, Hou H, You T (2011) Biosens Bioelectron 26:4585PubMedCrossRefGoogle Scholar
  97. 97.
    Lee JS, Kwon OS, Park SJ, Park EU, You SA, Yoon H, Jang J (2011) ACS Nano 5:7992PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang L, Wang X, Zhao Y, Zhu Z, Fong H (2012) Mater Lett 68:133CrossRefGoogle Scholar
  99. 99.
    Zhao Y, Wang X, Lai C, He G, Zhang L, Fong H, Zhu Z (2012) RSC Adv 2:10195CrossRefGoogle Scholar
  100. 100.
    Im JS, Kang SC, Lee S-H, Lee Y-S (2010) Carbon 48:2573CrossRefGoogle Scholar
  101. 101.
    Ismail AF, David LIB (2001) J Membr Sci 193:1CrossRefGoogle Scholar
  102. 102.
    Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Chemosphere 58:1049PubMedCrossRefGoogle Scholar
  103. 103.
    Singh G, Rana D, Matsuura T, Ramakrishna S, Narbaitz RM, Tabe S (2010) Sep Purif Technol 74:202CrossRefGoogle Scholar
  104. 104.
    Lee KJ, Shiratori N, Lee GH, Miyawaki J, Mochida I, Yoo S-H, Jang J (2010) Carbon 48:4248CrossRefGoogle Scholar
  105. 105.
    Wang M-X, Huang Z-H, Shimohara T, Kang F, Liang K (2011) Chem Eng J 170:505CrossRefGoogle Scholar
  106. 106.
    Schneiderman S, Zhang L, Fong H, Menkhaus TJ (2011) J Chromatogr A 1218:8989PubMedCrossRefGoogle Scholar
  107. 107.
    Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita N, Ogihara N, Nakamura K, Ishigaki N, Kato H, Haniu H, Taruta S, Kim YA, Endo M (2011) Chem Soc Rev 40:3824PubMedCrossRefGoogle Scholar
  108. 108.
    Cunha C, Panseri S, Antonini S (2011) Nanomed Nanotechnol Biol Med 7:50CrossRefGoogle Scholar
  109. 109.
    Liu H, Cai Q, Liang P, Fang Z, Duan S, Ryu S, Yang X, Deng X (2010) Carbon 48:2266CrossRefGoogle Scholar
  110. 110.
    Wu M, Wang Q, Liu X, Liu H (2013) Carbon 51:335CrossRefGoogle Scholar
  111. 111.
    Yang Q, Sui G, Shi YZ, Duan S, Bao JQ, Cai Q, Yang XP (2013) Carbon 56:288CrossRefGoogle Scholar
  112. 112.
    Fitzer E (1989) Carbon 27:621CrossRefGoogle Scholar
  113. 113.
    Tan EPS, Lim CT (2006) Compos Sci Technol 66:1102CrossRefGoogle Scholar
  114. 114.
    Zhang J, Loya P, Peng C, Khabashesku V, Lou J (2012) Adv Funct Mater 22:4070CrossRefGoogle Scholar
  115. 115.
    Liu J, Zhou P, Zhang L, Ma Z, Liang J, Fong H (2009) Carbon 47:1087CrossRefGoogle Scholar
  116. 116.
    Wu M, Wang Q, Li K, Wu Y, Liu H (2012) Polym Degrad Stab 97:1511CrossRefGoogle Scholar
  117. 117.
    Teo WE, Ramkrishna S (2006) Nanotechnology 17:R89PubMedADSCrossRefGoogle Scholar
  118. 118.
    Teo WE, Inai R, Ramakrishna S (2011) Sci Technol Adv Mater 12:013002CrossRefGoogle Scholar
  119. 119.
    Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H (2009) Polymer 50:2999CrossRefGoogle Scholar
  120. 120.
    Zhou Z, Liu K, Lai C, Zhang L, Li J, Hou H, Reneker DH, Fong H (2010) Polymer 51:2360CrossRefGoogle Scholar
  121. 121.
    Lai C, Zhong G, Yue Z, Chen G, Zhang L, Vakili A, Wang Y, Zhu L, Liu J, Fong H (2011) Polymer 52:519CrossRefGoogle Scholar
  122. 122.
    Liu J, Chen G, Gao H, Zhang L, Ma S, Liang J, Fong H (2012) Carbon 50:1262CrossRefGoogle Scholar
  123. 123.
    Hosseini Ravandi SA, Sadrjahani M (2012) J Appl Polym Sci 124:3529CrossRefGoogle Scholar
  124. 124.
    Hosseini Ravandi SA, Hassanabadi E, Tavanai H, Abuzade RA (2012) J Appl Polym Sci 124:5002Google Scholar
  125. 125.
    Moon SC, Farris RJ (2009) Carbon 47:2829CrossRefGoogle Scholar
  126. 126.
    Arshad SN, Naraghi M, Chasiotis I (2011) Carbon 49:1710CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Joint School of Nanoscience and NanoengineeringNorth Carolina Agricultural and Technical State UniversityGreensboroUSA
  2. 2.Department of Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations