Advertisement

Journal of Materials Science

, Volume 48, Issue 24, pp 8463–8470 | Cite as

Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors

  • Gui-Jing Liu
  • Le-Qing FanEmail author
  • Fu-Da Yu
  • Ji-Huai Wu
  • Lu Liu
  • Zhao-Yuan Qiu
  • Qin Liu
Article

Abstract

This paper reports a facile one-step hydrothermal treatment of graphene oxide (GO) and cobalt acetate (Co(Ac)2) for preparing reduced GO (rGO)/Co3O4 composites which were used as electrode materials for supercapacitors containing electrolytes of 2 M KOH aqueous solution. The morphologies and structures of rGO/Co3O4 composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectrum, and N2 adsorption–desorption isotherms. The electrochemical performances of two-electrode supercapacitors were evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. During the hydrothermal reaction, GO was reduced and 10–30 nm-sized Co3O4 nanoparticles were in situ grown onto the rGO sheets simultaneously. The effects of mass ratios of GO and Co(Ac)2 on the performances of supercapacitors were investigated. In comparison with pure Co3O4-based supercapacitor, supercapacitors based on rGO/Co3O4 composites show better performances because both the specific surface areas and the electrical conductivities of electrode materials were increased by the introduction of rGO. When the mass ratio of GO and Co(Ac)2 is 1:2, rGO/Co3O4 composite electrode exhibits the highest capacitance of 263.0 F/g at a constant current density of 0.2 A/g in a two-electrode supercapacitor. In addition, the supercapacitor shows high rate capability and long cyclic durability.

Keywords

Graphene Oxide Co3O4 Graphite Oxide Composite Electrode Constant Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. U1205112), the Doctoral Supervisor Project of Chinese Ministry of Education (No. 20123501110001), and the Key Project of Chinese Ministry of Education (No. 211204).

References

  1. 1.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845CrossRefGoogle Scholar
  2. 2.
    Huang Y, Liang JJ, Chen YS (2012) Small 8:1805CrossRefGoogle Scholar
  3. 3.
    Miller JR, Outlaw R, Holloway B (2010) Science 329:1637CrossRefGoogle Scholar
  4. 4.
    Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Carbon 48:2118CrossRefGoogle Scholar
  5. 5.
    Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Nano Lett 9:1872CrossRefGoogle Scholar
  6. 6.
    Sattarahmady N, Parsa A, Heli H (2013) J Mater Sci 48:2346. doi: 10.1007/s10853-012-7014-x CrossRefGoogle Scholar
  7. 7.
    Liu R, Lee SB (2008) J Am Chem Soc 130:2942CrossRefGoogle Scholar
  8. 8.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Adv Mater 23:4828CrossRefGoogle Scholar
  9. 9.
    Cheng Q, Xia Y, Pavlinek V, Yan Y, Li C, Saha P (2012) J Mater Sci 47:6444. doi: 10.1007/s10853-012-6576-y CrossRefGoogle Scholar
  10. 10.
    Lu Q, Chen JG, Xiao JQ (2013) Angew Chem Int Ed 52:1882CrossRefGoogle Scholar
  11. 11.
    Dubal DP, Lee SH, Kim WB (2012) J Mater Sci 47:3817. doi: 10.1007/s10853-011-6236-7 CrossRefGoogle Scholar
  12. 12.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498CrossRefGoogle Scholar
  13. 13.
    Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48:7752CrossRefGoogle Scholar
  14. 14.
    Bai H, Li C, Wang X, Shi G (2011) J Phys Chem C 115:5545CrossRefGoogle Scholar
  15. 15.
    Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782CrossRefGoogle Scholar
  16. 16.
    Lee JW, Ahn T, Soundararajan D, Ko JM, Kim JD (2011) Chem Commun 47:6305CrossRefGoogle Scholar
  17. 17.
    Zhao W, Zhou X, Xue Z, Wu B, Liu X, Lu X (2013) J Mater Sci 48:2566. doi: 10.1007/s10853-012-7047-1 CrossRefGoogle Scholar
  18. 18.
    Vivekchand S, Rout CS, Subrahmanyam K, Govindaraj A, Rao C (2008) J Chem Sci 120:9CrossRefGoogle Scholar
  19. 19.
    Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282CrossRefGoogle Scholar
  20. 20.
    Xiang C, Li M, Zhi M, Manivannan A, Wu N (2012) J Power Sources 226:65CrossRefGoogle Scholar
  21. 21.
    Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Adv Funct Mater 22:2632CrossRefGoogle Scholar
  22. 22.
    Zhu C, Fang Y, Wen D, Dong D (2011) J Mater Chem 21:16911CrossRefGoogle Scholar
  23. 23.
    Qu J, Gao F, Zhou Q, Wang Z, Hu H, Li B, Wan W, Wang X, Qiu J (2013) Nanoscale 5:2999CrossRefGoogle Scholar
  24. 24.
    Wang J, Gao Z, Li ZS, Wang B, Yan YX, Liu Q, Mann T, Zhang ML, Jiang Z (2011) J Solid State Chem 184:1421CrossRefGoogle Scholar
  25. 25.
    Liang J, Huang Y, Oh J, Kozlov M, Sui D, Fang S, Baughman RH, Ma Y, Chen Y (2011) Adv Funct Mater 21:3778CrossRefGoogle Scholar
  26. 26.
    Cheng H, Lu ZG, Deng JQ, Chung C, Zhang K, Li YY (2010) Nano Res 3:895CrossRefGoogle Scholar
  27. 27.
    Qing X, Liu S, Huang K, Lv K, Yang Y, Lu Z, Fang D, Liang X (2011) Electrochim Acta 56:4985CrossRefGoogle Scholar
  28. 28.
    Wang B, Wang Y, Park J, Ahn H, Wang G (2011) J Alloy Compd 509:7778CrossRefGoogle Scholar
  29. 29.
    Zhou W, Liu J, Chen T, Tan KS, Jia X, Luo Z, Cong C, Yang H, Li CM, Yu T (2011) Phys Chem Chem Phys 13:14462CrossRefGoogle Scholar
  30. 30.
    Yao Y, Yang Z, Sun H, Wang S (2012) Ind Eng Chem Res 51:14958CrossRefGoogle Scholar
  31. 31.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806CrossRefGoogle Scholar
  32. 32.
    Wu J, Yu H, Fan L, Luo G, Lin J, Huang M (2012) J Mater Chem 22:19025CrossRefGoogle Scholar
  33. 33.
    Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JM, Lu GQ (2009) J Am Chem Soc 131:5026CrossRefGoogle Scholar
  34. 34.
    Hu Z, Xie K, Wei D, Ullah N (2011) J Mater Sci 46:7588. doi: 10.1007/s10853-011-5734-y CrossRefGoogle Scholar
  35. 35.
    Wilson NR, Pandey PA, Beahland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3:2547CrossRefGoogle Scholar
  36. 36.
    Thomas HR, Vallés C, Young RJ, Kinloch IA, Wilson NR, Rourke JP (2013) J Mater Chem C 1:338CrossRefGoogle Scholar
  37. 37.
    Liu H, Li Y, Wang T, Wang Q (2012) J Mater Sci 47:1867. doi: 10.1007/s10853-011-5975-9 Google Scholar
  38. 38.
    Kim H, Seo DH, Kim SW, Kim J, Kang K (2011) Carbon 49:326CrossRefGoogle Scholar
  39. 39.
    Yang J, Liu H, Martens WN, Frost RL (2009) J Phys Chem C 114:111CrossRefGoogle Scholar
  40. 40.
    Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Adv Funct Mater 21:2366CrossRefGoogle Scholar
  41. 41.
    Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M, Lan Z (2012) J Power Sources 198:402CrossRefGoogle Scholar
  42. 42.
    Yu H, Tang Q, Wu J, Lin Y, Fan L, Huang M, Lin J, Li Y, Yu F (2012) J Power Sources 206:463CrossRefGoogle Scholar
  43. 43.
    Ning G, Fan Z, Wang G, Gao J, Qian W, Wei F (2011) Chem Commun 47:5976CrossRefGoogle Scholar
  44. 44.
    Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) Adv Mater 22:347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gui-Jing Liu
    • 1
  • Le-Qing Fan
    • 1
    Email author
  • Fu-Da Yu
    • 1
  • Ji-Huai Wu
    • 1
  • Lu Liu
    • 1
  • Zhao-Yuan Qiu
    • 1
  • Qin Liu
    • 1
  1. 1.Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical ChemistryHuaqiao UniversityQuanzhouPeople’s Republic of China

Personalised recommendations