Journal of Materials Science

, Volume 48, Issue 23, pp 8308–8319 | Cite as

Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds

  • Edwin Yesid Gómez-Pachón
  • Francisco Manuel Sánchez-Arévalo
  • Federico J. Sabina
  • Alfredo Maciel-Cerda
  • Raúl Montiel Campos
  • Nikola Batina
  • Israel Morales-Reyes
  • Ricardo Vera-Graziano


The aim of this study is to predict the elastic response of poly(lactic acid) (PLA) electrospun nanofibre scaffolds through mathematical models based on homogenisation and the differential replacement method (DRM). These models principally seek to determine and analyse the effects of the internal morphology of the nanofibres on the effective Young’s modulus of polymer nanofibre scaffolds. The microstructure of the nanofibres was first characterised by SEM, XRD, DSC, AFM, and TEM techniques. From this characterisation, strong evidence of a hierarchical core–shell structure was found. With the experimental data, it was possible to design and validate better models than those currently used. In addition, the effects of the electrospinning parameters, such as take-up velocity and thermal treatment, were analysed and correlated with the morphology and the elastic properties of the nanofibres and their scaffolds. To validate the models’ results, we conducted a series of uniaxial tensile tests on the PLA nanofibre scaffolds. Using the data from the nanofibre measurements, the homogenisation approximations and the model based on the DRM predicted an effective Young’s modulus of 667 and 835 MPa, respectively. The predicted data were in excellent agreement with the experimental results (685–880 MPa). These models will be useful in understanding and evaluating the structure–property relationships of oriented nanofibre scaffolds for medical or biological applications.



The authors thank Omar Novelo Peralta for SEM analysis, Patricia Castillo Ocampo for TEM analysis, Adriana Tejeda Cruz for XRD analysis, Damaris Cabrero Palomino for DSC analysis and Ana Pérez Arteaga and Ramiro Chávez for computational support. This project has been supported by ICyTDF (Grant 180/2009), DGAPA-UNAM (Grants IN116809 and IN108913), CONACYT (Grant 129658 and a scholarship), and PCeIM-UNAM.


  1. 1.
    Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Adv Drug Deliv Rev 59:1413CrossRefGoogle Scholar
  2. 2.
    Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004) J Nanosci Nanotechnol 4:52Google Scholar
  3. 3.
    Agarwal S, Wendorff JH, Greiner A (2008) Polymer 49:5603CrossRefGoogle Scholar
  4. 4.
    Yi-Fan G, Imran S, Rafaqat H (2013) J Mater Sci 48:3027. doi: 10.1007/s10853-013-7145-8 CrossRefGoogle Scholar
  5. 5.
    Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Mater Sci Eng, C 27:504CrossRefGoogle Scholar
  6. 6.
    Liao S, Murugan R, Chan CK, Ramakrishna S (2008) J Mech Behav Biomed Mater 1:252CrossRefGoogle Scholar
  7. 7.
    Persson M, Cho S-W, Skrifvars M (2013) J Mater Sci 48:3055. doi: 10.1007/s10853-012-7022-x CrossRefGoogle Scholar
  8. 8.
    Reneker DH, Yarin AL (2008) Polymer 49:2387CrossRefGoogle Scholar
  9. 9.
    McClure M, Simpson DG, Bowlin GL (2012) J Mech Behav Biomed Mater 10:48CrossRefGoogle Scholar
  10. 10.
    Hong Z, Qiu X, Sun J, Deng M, Chen X, Jing X (2004) Polymer 45:6699CrossRefGoogle Scholar
  11. 11.
    Vera-Graziano R, Maciel-Cerda A, Moreno-Rondon EV, Ospina A, Gomez-Pachon EY (2012) Mater Res Soc Symp Proc 1376:1CrossRefGoogle Scholar
  12. 12.
    Liao C-C, Wang C-C, Chen C-Y (2011) Polymer 52:4303CrossRefGoogle Scholar
  13. 13.
    Tan EPS, Lim CT (2004) App Phys Lett 84:1603CrossRefGoogle Scholar
  14. 14.
    Lim CT, Tan EPS, Ng SY (2008) App Phys Lett 92:3Google Scholar
  15. 15.
    Tan EPS, Lim CT (2006) Nanotechnology 17:2649CrossRefGoogle Scholar
  16. 16.
    Wong S-C, Baji A, Leng S (2008) Polymer 21:4713CrossRefGoogle Scholar
  17. 17.
    Naraghi M, Arshad SN, Chasiotis I (2011) Polymer 52:1612CrossRefGoogle Scholar
  18. 18.
    Baji A, Mai Y, Wong S, Abtahi M, Chen P (2010) Compos Sci Technol 70:703CrossRefGoogle Scholar
  19. 19.
    Yoshioka T, Dersch R, Tsuji M, Schaper AK (2010) Polymer 51:2383CrossRefGoogle Scholar
  20. 20.
    Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnol 16:208CrossRefGoogle Scholar
  21. 21.
    Arinstein A, Burman M, Gendelman O, Zussman E (2007) Nat Nanotechnol 2:59CrossRefGoogle Scholar
  22. 22.
    Cicero JA, Dorgan JR (2002) J Polym Environ 9:1CrossRefGoogle Scholar
  23. 23.
    Stylianopoulos T, Barocas VH (2007) Comp Meth Appl Mech Eng 196:2981CrossRefGoogle Scholar
  24. 24.
    Stylianopoulos T, Bashur CA, Goldstein AS, Guelcher SA, Barocas VH (2008) J Mech Behav Biomed Mater 1(4):326CrossRefGoogle Scholar
  25. 25.
    Sun L, Han RPS, Wang J, Lim CT (2008) Nanotechnology 19:455706CrossRefGoogle Scholar
  26. 26.
    Hori M, Nemat-Nasser S (1999) Mech Mater 31:667CrossRefGoogle Scholar
  27. 27.
    Hill R (1964) J Mech Phys Solids 12:199CrossRefGoogle Scholar
  28. 28.
    Hashin Z, Rosen BW (1964) J Appl Mech 31:223CrossRefGoogle Scholar
  29. 29.
    Qiu YP, Weng GJ (1991) ASME J Appl Mech 58:388CrossRefGoogle Scholar
  30. 30.
    Jasiuk I, Kouider MW (1993) Mech Mater 15:53CrossRefGoogle Scholar
  31. 31.
    Shen L, Li J (2003) Int J Solids Struct 40:1393CrossRefGoogle Scholar
  32. 32.
    Shen L, Li J (2005) Proc R Soc Lond A 461:1475CrossRefGoogle Scholar
  33. 33.
    Sevostianov I, Kachanov M (2007) Int J Solids Struct 44:1304CrossRefGoogle Scholar
  34. 34.
    ASTM D1708.10 (2010) Standard test method for tensile properties of plastics by use of microtensile specimens. doi: 10.1520/D1708-10
  35. 35.
    Sánchez-Arévalo FM, Pulos G (2008) Mater Charact 59:1572CrossRefGoogle Scholar
  36. 36.
    Montes De Oca H, Ward IM (2007) J Polym Sci Part B 45:892CrossRefGoogle Scholar
  37. 37.
    Ramírez M, Nava-Gómez GG, Sabina FJ, Camacho-Montes H, Guinovart-Díaz R, Rodríguez-Ramos R, Bravo-Castillero J (2012) Int J Eng Sci 58:95CrossRefGoogle Scholar
  38. 38.
    Milton GW (2002) The Mathematical Theory of Composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. 39.
    Garlotta D (2001) J Polym Environ 9:63CrossRefGoogle Scholar
  40. 40.
    Gunatillake PA, Adhikari R (2003) Eur Cell Mater 5:1Google Scholar
  41. 41.
    Madhavan K, Nair NR, John RP (2010) Bioresour Technol 101:8493CrossRefGoogle Scholar
  42. 42.
    Christensen RM (1991) Mechanics of composite materials edit. Krieger, MalabarGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Edwin Yesid Gómez-Pachón
    • 1
  • Francisco Manuel Sánchez-Arévalo
    • 1
  • Federico J. Sabina
    • 2
  • Alfredo Maciel-Cerda
    • 1
  • Raúl Montiel Campos
    • 3
  • Nikola Batina
    • 4
  • Israel Morales-Reyes
    • 4
  • Ricardo Vera-Graziano
    • 1
  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexico DFMexico
  2. 2.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMexico DFMexico
  3. 3.Departamento de PolímerosUniversidad Autónoma MetropolitanaMexico DFMexico
  4. 4.Laboratorio de Nanotecnología e Ingeniería Molecular, Departamento de QuímicaUniversidad Autónoma MetropolitanaMexico DFMexico

Personalised recommendations