Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study
Abstract
The mechanical, optoelectronic, and thermodynamic properties of carbon silicon nitride spinel compound have been investigated using density functional theory. The exchange–correlation potential was treated with the local density approximation (LDA) and the generalized gradient approximation of Perdew–Burke and Ernzerhof (PBE-GGA). In addition, the Engel–Vosko generalized gradient approximation (EV-GGA) and the modified Becke–Johnson potential (TB-mBJ) were also applied to improve the electronic band structure calculations. The ground state properties, including lattice constants and bulk modulus, are in fairly good agreement with the available theoretical data. The elastic constants, Young’s modulus, shear modulus, and Poisson’s ratio have been determined by using the variation of the total energy with strain. From the elastic parameters, it is inferred that this compound is brittle in nature. The results of the electronic band structure show that CSi2N4 has a direct energy band gap (Γ–Γ). The TB-mBJ approximation yields larger fundamental band gaps compared to those of LDA, PBE-GGA, and EV-GGA. In addition, we have calculated the optical properties, namely, the real and the imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, and energy loss function for radiation up to 40.0 eV. Using the quasi-harmonic Debye model which considers the phononic effects, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for this compound were investigated for the first time.
References
- 1.Zerr A, Riedel R, Sekine T, Lowther JE, Ching WY, Tanaka I (2006) Adv Mater (Weinheim, Germany) 18:2933 and references thereinGoogle Scholar
- 2.Lowther JE (2011) Materials 4:1104CrossRefGoogle Scholar
- 3.Ching WY, Rulis P (2006) Phys Rev B 73:045202 and references thereinGoogle Scholar
- 4.Tanaka I, Oba F, Sekine T, Ito E, Kuba A, Tastumi K, Adach H, Yamamoto T (2002) J Mater Res 17:731Google Scholar
- 5.Mo SD, Ouyang LZ, Ching WY, Tanaka I, Koyama Y, Riedel R (1999) Phys Rev Lett 83:5046CrossRefGoogle Scholar
- 6.Ching W-Y, Mo S-D, Ouyang L, Rulis P, Tanaka I, Yoshiya M (2002) J Am Ceram Soc 85:75CrossRefGoogle Scholar
- 7.Zerr A, Schwarz M, Schmechel R, Kolb R, von Seggern H, Riedel R (2002) Acta Cryst A 58:C47CrossRefGoogle Scholar
- 8.Leitch S, Moewes A, Ouyang L, Ching WY, Sekine T (2004) J Phys Condens Matter 16:6469CrossRefGoogle Scholar
- 9.Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P, Boehler R (1999) Nature (London) 400:340CrossRefGoogle Scholar
- 10.Zerr A, Scharz M, Serghiou G, Kroke E, Miehe G, Riedel R, Boehler R, Ger. Offen. (2000) DE 19855514 A1 (June, 8, 2000)Google Scholar
- 11.Jiang JZ, Kragh F, Frost DJ, Stahl K, Lindelov H (2001) J Phys. Condens Matter 13:L515CrossRefGoogle Scholar
- 12.Jiang JZ, Lindelov H, Gerward L, Stahl K, Reico JM, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A, Frost DJ (2002) Phys Rev B 65:161202CrossRefGoogle Scholar
- 13.Jiang JZ, Ståhl K, Berg RW, Frost DJ, Zhou TJ, Shi PX (2000) Europhys Lett 51(1):62CrossRefGoogle Scholar
- 14.Riedel R, Zerr A, Kroke E, Schwarz M (2001) Ceram Trans 112:119Google Scholar
- 15.Ching WY, Mo S-D, Ouyang LZ (2001) Phys Rev B 63:245110CrossRefGoogle Scholar
- 16.Tanaka I, Oba F, Ching W-Y (2001) Mater Integr 14:21Google Scholar
- 17.Oba F, Tatsumi K, Adachi H, Tanaka I (2001) Appl Phys Lett 78:1577CrossRefGoogle Scholar
- 18.Oba F, Tatsumi K, Tanaka I, Adachi H (2002) J Am Ceram Soc 85:97CrossRefGoogle Scholar
- 19.Serghiou G, Miehe G, Tschauner O, Zerr A, Boehler R (1999) J Chem Phys 111:4659CrossRefGoogle Scholar
- 20.Soignard E, McMillan PF (2004) Chem Mater 16:3533CrossRefGoogle Scholar
- 21.Sekine T, He H, Kobayashi T, Zhang M, Xu F (2000) Appl Phys Lett 76:3706CrossRefGoogle Scholar
- 22.He JL, Guo LC, Yu DL, Liu RP, Tian YJ, Wang HT (2004) Appl Phys Lett 85:5571CrossRefGoogle Scholar
- 23.Ching WY, Mo SD, Tanaka I, Yoshiya M (2001) Phys Rev B 63:064102CrossRefGoogle Scholar
- 24.Lowther JE, Amkreutz M, Frauenheim T, Kroke E, Riedel R (2003) Phys Rev B 68:033201CrossRefGoogle Scholar
- 25.Wang H, Chen Y, Kaneta Y, Iwata S (2007) Eur Phys B 59:155CrossRefGoogle Scholar
- 26.Zhang XY, Chen ZW, Du HJ, Yang C, Ma MZ, He JL, Tian YJ, Liu RP (2008) J Appl Phys 103:083533CrossRefGoogle Scholar
- 27.Chang YK, Hsieh HH, Pong WF, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF (1998) Phys Rev B 58:9018CrossRefGoogle Scholar
- 28.Badzian A (2002) J Am Ceram Soc 85:16CrossRefGoogle Scholar
- 29.Kroll P, Riedel R, Hoffman R (1999) Phys Rev B 60:3126CrossRefGoogle Scholar
- 30.Ding Y-C, Chen M, Jiang M-H, Gao X-Y (2012) Phys B Condens Matter 407:4323CrossRefGoogle Scholar
- 31.Sjöstedt E, Nordström L, Singh DJ (2000) Solid State Commun 114:15CrossRefGoogle Scholar
- 32.Wong KM, Alay-e-Abbas SM, Shaukat A, Fang Y, Lei Y (2013) J Appl Phys 113:014304CrossRefGoogle Scholar
- 33.Wong KM, Alay-e-Abbas SM, Fang Y, Shaukat A, Lei Y (2013) J Appl Phys 114:034901CrossRefGoogle Scholar
- 34.Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k: an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz/Techn. Universität Wien, WienGoogle Scholar
- 35.Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
- 36.Tran F, Blaha P (2009) Rev Lett 102:226401CrossRefGoogle Scholar
- 37.Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
- 38.Ambrosch-Draxl C, Sofo JO (2006) Comput Phys Commun 175:1CrossRefGoogle Scholar
- 39.Delin A, Eriksson AO, Ahuja R, Johansson B, Brooks MSS, Gasche T, Auluck S, Wills JM (1996) Phys Rev B 54:1673CrossRefGoogle Scholar
- 40.Yu YP, Cardona M (1999) Fundamental of semiconductors physics and materials properties, 2nd edn. Springer, Berlin, p 233CrossRefGoogle Scholar
- 41.Blanco MA, Francisco E, Luaña V (2004) Comput Phys Commun 185:57CrossRefGoogle Scholar
- 42.Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244CrossRefGoogle Scholar
- 43.Mehl MJ (1993) Phys Rev B 47:2493CrossRefGoogle Scholar
- 44.Wallace DC (1972) Thermodynamics of crystals. Wiley, New YorkGoogle Scholar
- 45.Hill R (1952) Proc Phys Soc Lond A 65:349CrossRefGoogle Scholar
- 46.Voigt W (1928) Lehrbuch der Kristallphysik. Teubner, LeipzigGoogle Scholar
- 47.Russ A, Angew A (1929) Math Phys 9:49Google Scholar
- 48.Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1990) J Appl Phys 84:4891CrossRefGoogle Scholar
- 49.Frantsevich IN, Voronov FF, Bokuta SA (1983) Elastic constants and elastic moduli of metals and insulators: Handbook. In: Frantsevich IN (ed), Naukova Dumka, Kiev, p 60–180Google Scholar
- 50.Pugh SF (1954) Philos Mag 45:823Google Scholar
- 51.Pettifor DG (1992) Mater Sci Technol 8:345CrossRefGoogle Scholar
- 52.Lawn BR, Wilshaw TR (1975) J Mater Sci 10:1049. doi:10.1007/BF00823224 CrossRefGoogle Scholar
- 53.Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago, p 16Google Scholar
- 54.Chung D, Buessem W (1967) J Appl Phys 38:2010CrossRefGoogle Scholar
- 55.Scanlon DO, Watson GW (2011) Phys Chem Chem Phys 13:9667CrossRefGoogle Scholar