Advertisement

Journal of Materials Science

, Volume 48, Issue 23, pp 8171–8198 | Cite as

Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy

  • Yasuhiro YamadaEmail author
  • Hajime Yasuda
  • Kazumasa Murota
  • Masashi Nakamura
  • Toshiaki Sodesawa
  • Satoshi Sato
Article

Abstract

X-ray photoelectron spectroscopy (XPS) is among the most powerful methods to determine the surface chemical properties of carbon materials. Because heat-treated graphite oxide includes various defects, analyses of the structure by XPS help us understand the structures of various carbon materials. Thus, XPS spectra of graphene-related materials containing various functional groups and other defects on edges and in the basal plane were simulated and full width at half maximums (FWHMs) and peak shifts were obtained by density functional theory calculation. Shifts of whole C1s spectra were influenced by the electron-withdrawing functional groups such as C=O-containing functional groups. FWHMs of the main peak of C1s spectra were influenced by mainly electron-withdrawing functional groups in addition to defects such as vacancy, pentagons, and heptagons. Analyses using only XPS provide us limited information, even though the peak tops and FHWMs of simulated XPS spectra are used for assignment. Combination use of peak shifts and FWHMs of XPS spectra, infrared spectroscopy, and density functional theory calculation provided more reliable assignments of defects including oxygen-containing functional groups of carbon materials than commonly used methods using only peak shifts of XPS spectra.

Keywords

Basal Plane Graphite Oxide Vacancy Defect Cyclic Ether Hydroxy Pyran 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the Kagoshima University in Japan for measuring samples by XPS. Graphite was provided by Nippon Graphite Industries, Ltd. This work was supported by Chemical Evaluation and Research Institute in Japan.

References

  1. 1.
    Radovic LR (2001) Chemistry and physics of carbon, vol 27. Marcel Dekker, New York, p 131Google Scholar
  2. 2.
    Serp P, Figueiredo JL (2009) Carbon materials for catalysis. Wiley, HobokenGoogle Scholar
  3. 3.
    Banhart F, Kotakoski J, Krasheninnikov AV (2011) ACS Nano 5(1):26CrossRefGoogle Scholar
  4. 4.
    Machado BF, Serp P (2012) Catal Sci Technol 2:54CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906CrossRefGoogle Scholar
  6. 6.
    Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Trends Biotechnol 29:205CrossRefGoogle Scholar
  7. 7.
    Evans EL, Lopez-Gonzalez JDD, Martin-Rodriguez A, Rodriguez-Reinoso F (1975) Carbon 13:461CrossRefGoogle Scholar
  8. 8.
    Donnet JB, Dauksch H, Escard J, Winter C (1972) C R Acad Sci Paris 275:1219Google Scholar
  9. 9.
    Ishitani A (1981) Carbon 19(4):269CrossRefGoogle Scholar
  10. 10.
    Takahagi T, Ishitani A (1988) Carbon 26(3):389CrossRefGoogle Scholar
  11. 11.
    Proctor A, Sherwood PMA (1983) Carbon 21(1):53CrossRefGoogle Scholar
  12. 12.
    Estrade-Szwarckopf H (2004) Carbon 42:1713CrossRefGoogle Scholar
  13. 13.
    Barinov A, Malcioglu OB, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M (2009) J Phys Chem C 113(21):9009CrossRefGoogle Scholar
  14. 14.
    Chen W, Zhu Z, Li S, Chen C, Yan L (2012) Nanoscale 4:2124CrossRefGoogle Scholar
  15. 15.
    Nikitin A, Xiaolin Li, Zhang Z, Ogasawara H, Dai H, Nilsson A (2008) Nano Lett 8(1):162CrossRefGoogle Scholar
  16. 16.
    Larciprete R, Lacovig P, Gardonio S, Baraldi A, Lizzit S (2012) J Phys Chem C 116:9900CrossRefGoogle Scholar
  17. 17.
    Hadži D, Novak A (1955) Trans Faraday Soc 51:1614CrossRefGoogle Scholar
  18. 18.
    Scholz W, Boehm HP (1969) Z Anorg Allg Chem 369:327CrossRefGoogle Scholar
  19. 19.
    Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y (2011) J Phys Chem C 115:19761CrossRefGoogle Scholar
  20. 20.
    Hontoria-Lucas C, López-Peinado AJ, López-González JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Carbon 33(11):1585CrossRefGoogle Scholar
  21. 21.
    Lee DW, De Los Santos LV, Seo JW, Leon Felix L, Bustamante AD, Cole JM, Barnes CHW (2010) J Phys Chem B 114:5723CrossRefGoogle Scholar
  22. 22.
    Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dekany I (2006) Chem Mater 18:2740CrossRefGoogle Scholar
  23. 23.
    Petit C, Seredych M, Bandosz TJ (2009) J Mater Chem 19:9176CrossRefGoogle Scholar
  24. 24.
    Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Nat Mater 9:840CrossRefGoogle Scholar
  25. 25.
    Jeong HK, Noh HJ, Kim JY, Jin MH, Park CY, Lee YH (2008) Europhys Lett 82:67004CrossRefGoogle Scholar
  26. 26.
    Sun H, Yang Y, Huang Q (2011) Integr Ferroelectr 128:163CrossRefGoogle Scholar
  27. 27.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228CrossRefGoogle Scholar
  28. 28.
    Hofmann U, Holst R (1939) Ber Dtsch Chem Ges 72:754CrossRefGoogle Scholar
  29. 29.
    Ruess G (1947) Monatsh Chem 76(3):381CrossRefGoogle Scholar
  30. 30.
    Lerf A, He H, Riedl T, Dorster M, Klinowski (1997) J Solid State Ionics 857:101Google Scholar
  31. 31.
    Kim S, Zhou S, Hu Y, Acik M, Chabal YJ, Berger C, de Heer W, Bongiorno A, Riedo E (2012) Nat Mater 11:544CrossRefGoogle Scholar
  32. 32.
    Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’hommer RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110(17):8535CrossRefGoogle Scholar
  33. 33.
    Li Z, Zhang W, Luo Y, Yang J, Hou JG (2009) J Am Chem Soc 131:6320CrossRefGoogle Scholar
  34. 34.
    Li JL, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Phys Rev Lett 96:176101CrossRefGoogle Scholar
  35. 35.
    Zhang W, Carravetta V, Li Z, Luo Y, Yang J (2009) J Chem Phys 131:244505CrossRefGoogle Scholar
  36. 36.
    Zhang W (2009) First principles studies on chemical and electronic structures of adsorbates. Thesis. KTH Royal Institute of Technology, StockholmGoogle Scholar
  37. 37.
    Bagri A, Grantab R, Medhekar NV, Shenoy VB (2010) J Phys Chem C 114:12053CrossRefGoogle Scholar
  38. 38.
    Lahaye RJWE, Jeong HK, Park CY, Lee YH (2009) Phys Rev B 79:125435CrossRefGoogle Scholar
  39. 39.
    Lu N, Yin D, Li Z, Yang J (2011) J Phys Chem C 115:11991CrossRefGoogle Scholar
  40. 40.
    Yan JA, Xian L, Chou MY (2009) Phys Rev Lett 103:086802CrossRefGoogle Scholar
  41. 41.
    Wang L, Sun YY, Lee K, West D, Chen ZF, Zhao JJ, Zhang SB (2010) Phys Rev B 82:161406CrossRefGoogle Scholar
  42. 42.
    Yan JA, Chou MY (2010) Phys Rev B 82:125403CrossRefGoogle Scholar
  43. 43.
    Ghaderi N, Peressi M (2010) J Phys Chem C 114:21625CrossRefGoogle Scholar
  44. 44.
    Tang S, Zhang S (2012) Chem Phys 392:33CrossRefGoogle Scholar
  45. 45.
    Samarakoon DK, Wang XQ (2011) Nanoscale 3:192CrossRefGoogle Scholar
  46. 46.
    Nakajima T, Mabuchi Hagiwara R (1988) Carbon 26(3):357CrossRefGoogle Scholar
  47. 47.
    Boukhvalov DW, Katsnelson MI (2008) J Am Chem Soc 130:10697CrossRefGoogle Scholar
  48. 48.
    Liu L, Wang L, Gao J, Zhao J, Gao X, Chen Z (2012) Carbon 50:1690CrossRefGoogle Scholar
  49. 49.
    Boukhvalov DW (2010) Phys Chem Chem Phys 12:15367CrossRefGoogle Scholar
  50. 50.
    Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Science 321:1815CrossRefGoogle Scholar
  51. 51.
    Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Nat Chem 2:581CrossRefGoogle Scholar
  52. 52.
    Mao S, Pu H, Chen J (2012) RSC Adv 2:2643CrossRefGoogle Scholar
  53. 53.
    Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CAJ, Ruoff RS (2009) Carbon 47:145CrossRefGoogle Scholar
  54. 54.
    Akhavan O (2010) Carbon 48:509CrossRefGoogle Scholar
  55. 55.
    Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastriguivannu, Granozzi G, Garfunkel E, Chhowalla M (2009) Adv Funct Mater 19:2577CrossRefGoogle Scholar
  56. 56.
    Larciprete R, Fabris S, Sun T, Lacovig P, Baraldi A, Lizzit S (2011) J Am Chem Soc 133(43):17315CrossRefGoogle Scholar
  57. 57.
    Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) J Phys Chem C 115:17009CrossRefGoogle Scholar
  58. 58.
    Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal YJ (2010) ACS Nano 4(10):5861CrossRefGoogle Scholar
  59. 59.
    Proctor A, Sherwood PMA (1982) J Electron Spectrosc Relat Phenom 27:39CrossRefGoogle Scholar
  60. 60.
    Fuente E, Menendez JA, Diez MA, Suarez D, Montes-Moran MA (2003) J Phys Chem B 107:6350CrossRefGoogle Scholar
  61. 61.
    He H, Klinowski J, Forster M, Lerf A (1998) Chem Phys Lett 287:53CrossRefGoogle Scholar
  62. 62.
    Orrego JF, Zapata F, Truong TN, Mondragón F (2009) J Phys Chem A 113:8415CrossRefGoogle Scholar
  63. 63.
    Radovic LR (2009) J Am Chem Soc 131:17166CrossRefGoogle Scholar
  64. 64.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501CrossRefGoogle Scholar
  65. 65.
    Thrower PA (1969) In: Walker PL Jr (ed) Chemistry and physics of carbon, vol 5. Dekker, New YorkGoogle Scholar
  66. 66.
    Sun T, Fabris S, Baroni S (2011) J Phys Chem C 115:4730CrossRefGoogle Scholar
  67. 67.
    Carlsson JM, Hanke F, Linic S, Scheffler M (2009) Phys Rev Lett 102:166104CrossRefGoogle Scholar
  68. 68.
    Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Klaus K, Ute K (2010) Nano Lett 10(4):1144CrossRefGoogle Scholar
  69. 69.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven, T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople, JA (2004) Gaussian 03, revision C.02, Gaussian, Inc., WallingfordGoogle Scholar
  70. 70.
    Koopmans T (1933) Physica 1:104CrossRefGoogle Scholar
  71. 71.
    Scott AP, Radom L (1996) J Phys Chem 100(41):16505CrossRefGoogle Scholar
  72. 72.
    Brodie BC (1860) Ann Chem Phys 59:466Google Scholar
  73. 73.
    Proctor A, Sherwood PMA (1982) Anal Chem 54:13CrossRefGoogle Scholar
  74. 74.
    Briggs D, Grant JT (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy. IM Publications and Surface Spectra Ltd, Manchester, p 401Google Scholar
  75. 75.
    Kohiki S, Oki K (1984) J Electron Spectrosc Relat Phenom 33:375CrossRefGoogle Scholar
  76. 76.
    Takabayashi S, Okamoto K, Motomitsu K, Terayama A, Nakatani T, Sakaue H, Suzuki H, Takahagi T (2008) Appl Suf Sci 254:2666CrossRefGoogle Scholar
  77. 77.
    Nikitin A, Ogasawara H, Mann D, Denecke R, Zhang Z, Dai H, Cho K, Nilsson A (2005) Phys Rev Lett 95:225507CrossRefGoogle Scholar
  78. 78.
    Radovic L, Suárez A, Vallejos F, Sofo J (2011) Carbon 49(13):4226CrossRefGoogle Scholar
  79. 79.
    Szabó T, Berkesi O, Dékány I (2005) Carbon 43:3181CrossRefGoogle Scholar
  80. 80.
    Subrahmanyam KS, Kumar P, Maitra U, Govindaraj A, Hembram KPSS, Waghmare UV, Rao CNR (2011) Proc Natl Acad Sci 108(7):2674CrossRefGoogle Scholar
  81. 81.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610CrossRefGoogle Scholar
  82. 82.
    Radovic L, Silva AB, Vallejos F (2011) Carbon 49(13):4218CrossRefGoogle Scholar
  83. 83.
    Yang RT, Wong C (1981) J Chem Phys 75:4471CrossRefGoogle Scholar
  84. 84.
    Trick KA, Saliba TE (1995) Carbon 33(11):1509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yasuhiro Yamada
    • 1
    Email author
  • Hajime Yasuda
    • 1
  • Kazumasa Murota
    • 1
  • Masashi Nakamura
    • 1
  • Toshiaki Sodesawa
    • 1
  • Satoshi Sato
    • 1
  1. 1.Graduate School of EngineeringChiba UniversityChibaJapan

Personalised recommendations