Journal of Materials Science

, Volume 48, Issue 22, pp 7935–7948 | Cite as

Properties and drug release profile of poly(N-isopropylacrylamide) microgels functionalized with maleic anhydride and alginate

  • Stojanka Petrusic
  • Petar Jovancic
  • Maryline Lewandowski
  • Stephane Giraud
  • Svetlana Grujic
  • Sanja Ostojic
  • Branko Bugarski
  • Vladan Koncar


This study highlights the advantages of functionalized poly(N-isopropylacrylamide) (PNIPAAm) microgels over pure PNIPAAm microgels in terms of polymer network properties and drug release profiles. PNIPAAm network was modified by addition of maleic anhydride (MA) as a comonomer and by formation of interpenetrating polymer network in the presence of alginate. The functionalized thermosensitive microgels in the size range from 20 to 80 μm and with better performance in comparison with pure PNIPAAm microgels were prepared by inverse suspension polymerization. The impact of MA and alginate on the PNIPAAm microgel structure was evaluated through analysis of microgel size, size distribution, volume phase transition temperature (VPTT), equilibrium swelling ratio as well as morphology of the system. It was shown that the controlled modification of PNIPAAm network could result in microgels of considerably improved swelling capacity with unchanged thermosensitivity and maintained open pore morphology. In addition, drug release behavior of microgels could be markedly altered. Release of procaine hydrochloride from the selected microgels was studied using Franz diffusion cell at temperatures below and above VPTT of the microgels. Temperature-controlled drug release pattern was dependent on the type of functionalization of PNIPAAm network. According to drug loading properties and drug release mechanism, PNIPAAm/MA copolymer microgels demonstrated the optimal performances.


Alginate Drug Release Sodium Alginate Maleic Anhydride PNIPAAm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported under the project ARCUS 2006—Nord-Pas-de-Calais/Bulgarie—Roumanie—Serbie, granted by the French Ministry of Foreign Affairs and the Region Nord-Pas-De-Calais. The research is funded in part by the Ministry of Science of Republic of Serbia (Project Number III46010). The authors acknowledge Dr. Smilja Markovic from the Institute of Technical Sciences of SASA from Belgrade for the laser diffraction analysis.


  1. 1.
    Yoshida R, Okano T (2010) In: Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New YorkGoogle Scholar
  2. 2.
    Guenter G, Gerlach G (2009) In: Gerlach G, Arndt KF (eds) Chemical sensors and biosensors, vol 6. Springer-Verlag, BerlinGoogle Scholar
  3. 3.
    Cussler EL, Wang KL, Burban JH (1993) In: Dušek K (ed) Responsive gels: volume transitions II, vol 110. Springer-Verlag, BerlinGoogle Scholar
  4. 4.
    Galaev I, Mattiasson B (2008) Smart polymers: applications in biotechnology and biomedicine. CRC Press, Roca BatonGoogle Scholar
  5. 5.
    Anal AK (2007) Recent Pat Endocr Metab Immune Drug Discov 1:83CrossRefGoogle Scholar
  6. 6.
    Malmsten M (2006) Soft Matter 2:760CrossRefGoogle Scholar
  7. 7.
    Zha L, Banik B, Alexis F (2011) Soft Matter 7:5908CrossRefGoogle Scholar
  8. 8.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) Prog Polym Sci 33:448CrossRefGoogle Scholar
  9. 9.
    Ranade VV, Hollinger MA (2004) Drug delivery systems. CRC Press LLC, Roca BatonGoogle Scholar
  10. 10.
    Lin SY, Chen KS, Run-Chu L (2001) Biomaterials 22:2999CrossRefGoogle Scholar
  11. 11.
    Lopez VC, Hadgraft J, Snowden MJ (2005) Int J Pharm 292:137CrossRefGoogle Scholar
  12. 12.
    Hoare T, Pelton R (2004) Langmuir 20:2123CrossRefGoogle Scholar
  13. 13.
    Zhang XZ, Xu XD, Cheng SX, Zhuo RX (2008) Soft Matter 4:385CrossRefGoogle Scholar
  14. 14.
    Fu G, Soboyejo WO (2010) Mater Sci Eng C 30:8CrossRefGoogle Scholar
  15. 15.
    Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Radiat Phys Chem 69:303CrossRefGoogle Scholar
  16. 16.
    Kesim H, Rzaev ZMO, Dinçer S, Pişkin E (2003) Polymer 44:2897CrossRefGoogle Scholar
  17. 17.
    Zavgorodnya O, Serpe M (2011) Colloid Polym Sci 289:591CrossRefGoogle Scholar
  18. 18.
    Choi SH, Yoon JJ, Park TG (2002) J Colloid Interface Sci 251:57Google Scholar
  19. 19.
    Weiss-Malik RA, Solis FJ, Vernon BL (2004) J Appl Polym Sci 94:2110CrossRefGoogle Scholar
  20. 20.
    Das M, Sanson N, Fava D, Kumacheva E (2006) Langmuir 23:196CrossRefGoogle Scholar
  21. 21.
    Nussinovitch A (2010) Polymer macro- and micro-gel beads: fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  22. 22.
    Dumitriu RP, Mitchell GR, Vasile C (2011) Polym Int 60:222CrossRefGoogle Scholar
  23. 23.
    Dumitriu RP, Oprea AM, Vasile C (2009) In: Leonowicz M, Oleszak D (eds) Smart materials for smart devices and structures, vol 154. Trans Tech Publications Ltd, Stafa-ZurichGoogle Scholar
  24. 24.
    Piai JF, Moura MR, Rubira AF, Muniz EC (2008) Macromol Symp 266:108CrossRefGoogle Scholar
  25. 25.
    Petrusic S, Lewandowski M, Giraud S, Jovancic P, Bugarski B, Ostojic S, Koncar V (2012) J Appl Polym Sci 124:890CrossRefGoogle Scholar
  26. 26.
    Shi J, Alves NM, Mano JF (2006) Macromol Biosci 6:358CrossRefGoogle Scholar
  27. 27.
    Raz N, Li JK, Fiddes LK, Tumarkin E, Walker GC, Kumacheva E (2010) Macromolecules 43:7277CrossRefGoogle Scholar
  28. 28.
    Hu J, Meng H, Li G, Ibekwe SI (2012) Smart Mater Struct 21:053001 (p 23)Google Scholar
  29. 29.
    Lin SY, Chen KS, Run-Chu L (1999) Polymer 40:6307CrossRefGoogle Scholar
  30. 30.
    Petrusic S, Jovancic P, Lewandowski M, Giraud S, Bugarski B, Djonlagic J, Koncar V (2012) J Polym Res 19:9979CrossRefGoogle Scholar
  31. 31.
    Tan JPK, Wang Q, Tam KC (2008) J Control Release 128:248CrossRefGoogle Scholar
  32. 32.
    Procaine hydrochloride, ChemBlink (2013). Accessed 14 July 2013
  33. 33.
    Kayaman N, Kazan D, Erarslan A, Okay O, Baysal BM (1998) J Appl Polym Sci 67:805CrossRefGoogle Scholar
  34. 34.
    Chew NYK, Chan HK (2002) J Pharm Pharm Sci 5:162Google Scholar
  35. 35.
    Langer R, Peppas NA (2003) AIChE J 49:2990CrossRefGoogle Scholar
  36. 36.
    Chu LY, Park SH, Yamaguchi T, Nakao SI (2002) Langmuir 18:1856CrossRefGoogle Scholar
  37. 37.
    Karande VS, Bharimalla AK, Hadge GB, Mhaske ST, Vigneshwaran N (2011) Fiber Polym 12:299CrossRefGoogle Scholar
  38. 38.
    Arshady R (1992) Colloid Polym Sci 270:717CrossRefGoogle Scholar
  39. 39.
    Luciani CV, Choi KY, Xiao Z (2010) Chem Eng Technol 33:1833CrossRefGoogle Scholar
  40. 40.
    Hashim S, Brooks BW (2002) Chem Eng Sci 57:3703CrossRefGoogle Scholar
  41. 41.
    Kuo CK, Ma PX (2007) J Biomed Mater Res A 84A:899Google Scholar
  42. 42.
    Zhang W, Kim JH, Franco CMM, Middelberg APJ (2000) Appl Microbiol Biotechnol 54:28CrossRefGoogle Scholar
  43. 43.
    Kuckling D, Adler HJP, Arndt KF, Ling L, Habicher WD (2000) Macromol Chem Phys 201:273CrossRefGoogle Scholar
  44. 44.
    Ebara M, Aoyagi T, Sakai K, Okano T (2000) Macromolecules 33:8312CrossRefGoogle Scholar
  45. 45.
    Xu XD, Zhang XZ, Cheng SX, Zhuo RX, Kennedy JF (2007) Carbohydr Polym 68:416CrossRefGoogle Scholar
  46. 46.
    Çaykara T (2004) J Appl Polym Sci 92:763CrossRefGoogle Scholar
  47. 47.
    Liu YY, Liu WQ, Chen WX, Sun L, Zhang GB (2007) Polymer 48:2665CrossRefGoogle Scholar
  48. 48.
    Cheng H, Shen L, Wu C (2006) Macromolecules 39:2325CrossRefGoogle Scholar
  49. 49.
    Liu H, Zhen M, Wu R (2007) Macromol Chem Phys 208:874CrossRefGoogle Scholar
  50. 50.
    Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005) Colloid Polym Sci 283:431CrossRefGoogle Scholar
  51. 51.
    Lee SB, Park EK, Lim YM, Cho SK, Kim SY, Lee YM, Nho YC (2006) J Appl Polym Sci 100:4439CrossRefGoogle Scholar
  52. 52.
    Zhang N, Shen Y, Li X, Cai S, Liu M (2012) Biomed Mater 7:1Google Scholar
  53. 53.
    He H, Li L, Lee LJ (2006) Polymer 47:1612CrossRefGoogle Scholar
  54. 54.
    Omidian H, Park K (2010) In: Mattiasson B, Kumar A, Galaev IY (eds) Macroporous polymers: production properties and biotechnological/biomedical applications. CRC Press, Boca RatonGoogle Scholar
  55. 55.
    Akkaş P, Sarı M, Şen M, Güven O (1999) Radiat Phys Chem 55:717CrossRefGoogle Scholar
  56. 56.
    Fundueanu G, Constantin M, Ascenzi P (2009) Acta Biomater 5:363CrossRefGoogle Scholar
  57. 57.
    Lin CC, Metters AT (2006) Adv Drug Deliv Rev 58:1379CrossRefGoogle Scholar
  58. 58.
    Siepmann J, Peppas NA (2001) Adv Drug Deliv Rev 48:139CrossRefGoogle Scholar
  59. 59.
    Wang Q, Zhang J, Wang A (2009) Carbohydr Polym 78:731CrossRefGoogle Scholar
  60. 60.
    Abdul SA, Seshadri T, Sivakranth M, Umal SK (2010) Deriv Pharm Sin 1:61Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stojanka Petrusic
    • 1
    • 2
  • Petar Jovancic
    • 3
  • Maryline Lewandowski
    • 1
    • 2
  • Stephane Giraud
    • 1
    • 2
  • Svetlana Grujic
    • 3
  • Sanja Ostojic
    • 4
  • Branko Bugarski
    • 3
  • Vladan Koncar
    • 1
    • 2
  1. 1.École Nationale Supérieure des Arts et Industries TextilesGEMTEXRoubaixFrance
  2. 2.Université Lille Nord de FranceLilleFrance
  3. 3.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Institute of General and Physical ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations