Advertisement

Journal of Materials Science

, Volume 48, Issue 21, pp 7642–7651 | Cite as

Trends in formation energies and elastic moduli of ternary and quaternary transition metal nitrides

  • V. Petrman
  • J. Houska
Article

Abstract

The paper deals with characteristics of a wide range of ternary and quaternary metal nitrides (M = Ti, Zr, Hf, V, Nb or Ta) of various compositions obtained by ab initio calculations. We focus on the formation energies (E form), bulk moduli (B), shear moduli (G) and a difference of B and G from the weighted average of B and G of binary metal nitrides (∆B and ∆G). We show numerous monotonous dependencies, and identify exceptions to them. For elastic moduli of M1M2N we find that ∆B decreases (down to −19 GPa) and ∆G increases (up to 20 GPa) with increasing difference between atomic radii of M1 and M2. In parallel, low ∆B and high ∆G correspond to high E form and |E form|, respectively. E form of M1M2N increases with increasing difference between atomic radii and electronegativities of M1 and M2. The lowest E form values were observed for Ta-containing compositions, and the difference between E form of TaM1M2N and M1M2N is more significant for lower atomic radius and higher electronegativity of M1 and M2. Overall, we present trends which allow one to use fundamental arguments (such as atomic radii and electronegativities) to understand and predict which compositions form (nano)composites, which compositions form (stable) solid solutions, and which materials exhibit enhanced elastic moduli. The phenomena shown can be tested experimentally, and examined for even wider range of materials.

Keywords

Nitrides Formation Energy Elastic Modulo Atomic Radius Metal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by the Grant Agency of the Czech Republic GACR under Project No. P108/12/0393, and by the European Regional Development Fund under Project “NTIS—New Technologies for Information Society”, European Centre of Excellence, CZ.1.05/1.1.00/02.0090. Computational resources were provided by Metacentrum Czech Republic.

References

  1. 1.
    Mayrhofer PH, Mitterer C, Hultman L, Clemens H (2006) Prog Mater Sci 51:1032CrossRefGoogle Scholar
  2. 2.
    Abadias G, Koutsokeras LE, Dub SN, Tolmachova GN, Debelle A, Sauvage T, Villechaise P (2010) J Vac Sci Technol, A 28:541CrossRefGoogle Scholar
  3. 3.
    Holec D, Friak M, Neugebauer J, Mayrhofer PH (2012) Phys Rev B 85:064101CrossRefGoogle Scholar
  4. 4.
    Houska J, Klemberg-Sapieha JE, Martinu L (2009) J Phys 21:285302Google Scholar
  5. 5.
    Jhi SH, Ihm J, Louie SG, Cohen ML (1999) Nature 399:132CrossRefGoogle Scholar
  6. 6.
    PalDey S, Deevi SC (2003) Mater Sci Eng A 342:58CrossRefGoogle Scholar
  7. 7.
    Aouadi SM, Chladek JA, Namavar F, Finnegan N, Rohde SL (2002) J Vac Sci Technol B 20:1967CrossRefGoogle Scholar
  8. 8.
    Hoerling A, Sjölen J, Willmann H, Larsson T, Odén M, Hultman L (2008) Thin Solid Films 516:6421CrossRefGoogle Scholar
  9. 9.
    Matenoglou GM, Koutsokeras LE, Lekka CE, Abadias G, Kosmidis C, Evangelakis GA, Patsalas P (2009) Surf Coat Technol 204:911CrossRefGoogle Scholar
  10. 10.
    Rachbauer R, Holec D, Mayrhofer PH (2010) Appl Phys Lett 97:151901CrossRefGoogle Scholar
  11. 11.
    Beck U, Reiners G, Kopacz U, Jehn HA (1993) Surf Coat Technol 60:389CrossRefGoogle Scholar
  12. 12.
    Niu EW, Li L, Lv GH, Chen H, Li XZ, Yang XZ, Yang SZ (2008) Appl Surf Sci 254:3909CrossRefGoogle Scholar
  13. 13.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864CrossRefGoogle Scholar
  14. 14.
    Kohn W, Sham L (1965) Phys Rev A 140:1133Google Scholar
  15. 15.
    Giannozzi P et al. (2009) J Phys Condens Matter 21:395502, www.pwscf.org Google Scholar
  16. 16.
    Laasonen K, Car R, Lee C, Vanderbilt D (1991) Phys Rev B 43:6796CrossRefGoogle Scholar
  17. 17.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  18. 18.
    Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Phys Rev Lett 82:3296CrossRefGoogle Scholar
  19. 19.
    Wei SH, Ferreira LG, Bernard JE, Zunger A (1990) Phys Rev B 42:9622CrossRefGoogle Scholar
  20. 20.
    Alling B, Ruban AV, Karimi A, Peil OE, Simak SI, Hultman L, Abrikosov IA (2007) Phys Rev B 75:045123CrossRefGoogle Scholar
  21. 21.
    Alling B, Karimi A, Abrikosov IA (2008) Surf Coat Technol 203:883CrossRefGoogle Scholar
  22. 22.
    Mayrhofer PH, Music D, Schneider JM (2006) J Appl Phys 100:094906CrossRefGoogle Scholar
  23. 23.
    Tasnadi F, Oden M, Abrikosov IA (2012) Phys Rev B 85:144112CrossRefGoogle Scholar
  24. 24.
    Grossman JC, Mizel A, Cote M, Cohen ML, Louie SG (1999) Phys Rev B 60:6343CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Abadias G, Ivashchenko VI, Belliard L, Djemia P (2012) Acta Mater 60:5601CrossRefGoogle Scholar
  27. 27.
    Djemia P, Benhamida M, Bouamama K, Belliard L, Faurie D, Abadias G (2013) Surf Coat Technol 215:199CrossRefGoogle Scholar
  28. 28.
    Holec D, Zhou L, Rachbauer R, Mayrhofer PH (2013) J Appl Phys 113:113510CrossRefGoogle Scholar
  29. 29.
    Patsalas P, Abadias G, Matenoglou GM, Koutsokeras LE, Lekka CE (2010) Surf Coat Technol 205:1324CrossRefGoogle Scholar
  30. 30.
    Pugh SF (1954) Philos Mag 45:823Google Scholar
  31. 31.
    Sangiovanni DG, Chirita V, Hultman L (2010) Phys Rev B 81:104107CrossRefGoogle Scholar
  32. 32.
    Sangiovanni DG, Hultman L, Chirita V (2011) Acta Mater 59:2121CrossRefGoogle Scholar
  33. 33.
    Matenoglou GM, Lekka CE, Koutsokeras LE, Karras G, Kosmidis C, Evangelakis GA, Patsalas P (2009) J Appl Phys 105:103714CrossRefGoogle Scholar
  34. 34.
    Rachbauer R, Holec D, Mayrhofer PH (2012) Surf Coat Technol 211:98CrossRefGoogle Scholar
  35. 35.
    Mehl MJ, Klein BM, Papaconstantopoulos DA (1994) Intermetallic compounds: principles and practice. Wiley, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physics and NTIS - European Centre of ExcellenceUniversity of West BohemiaPlzenCzech Republic

Personalised recommendations