Journal of Materials Science

, Volume 48, Issue 20, pp 7274–7282 | Cite as

A selective ethanol gas sensor based on spray-derived Ag–ZnO thin films

  • N. L. TarwalEmail author
  • A. V. Rajgure
  • J. Y. Patil
  • M. S. Khandekar
  • S. S. Suryavanshi
  • P. S. Patil
  • M. G. Gang
  • J. H. KimEmail author
  • J. H. JangEmail author


A simple and cost-effective spray pyrolysis technique was employed to synthesize silver-doped zinc oxide (Ag–ZnO) thin films on the glass substrates from aqueous solutions of zinc acetate and silver nitrate precursors at 450 °C. The effects of Ag doping on structural, morphological, and gas-sensing properties of films were examined. The X-ray diffraction spectra of the Ag–ZnO films showed the polycrystalline nature having hexagonal crystal structure. Scanning electron microscopy (SEM) images of the pure ZnO films revealed the uniform distribution of the spherical grains (~80 nm size). Tiny Ag nanoparticles are clearly visualized in the SEM of Ag–ZnO films. The investigation of the effect of Ag doping on the gas-sensing properties of the Ag–ZnO revealed that the 15 % Ag-doped ZnO sample has the highest gas sensitivity (85 %) and excessive Ag doping in ZnO degraded the gas sensitivity. A possible mechanism of Ag–ZnO-based sensor sensitivity to the target gas is also proposed.


Ethanol Vapor Spray Pyrolysis Technique Dynamic Response Transient Zinc Acetate Precursor Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the Core Technology Development Program for Next-Generation Solar Cells of Research Institute for Solar and Sustainable Energies (RISE), GIST and the Human Resource Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea Government Ministry of Knowledge Economy (No. 20124010203180).


  1. 1.
    Kong J, Franklin N, Zhou C, Chapline M, Peng S, Cho K, Dai H (2000) Science 287:622CrossRefGoogle Scholar
  2. 2.
    Wang CH, Chu XF, Wu MM (2006) Sens Actuators B 113:320CrossRefGoogle Scholar
  3. 3.
    Zhai J, Wang D, Peng L, Lin Y, Li X, Xie T (2010) Sens Actuators B 147:234CrossRefGoogle Scholar
  4. 4.
    Barsan N, Koziej D, Weimar U (2007) Sens Actuators B 121:18CrossRefGoogle Scholar
  5. 5.
    Du X, George SM (2008) Sens Actuators B 135:152CrossRefGoogle Scholar
  6. 6.
    Tarwal NL, Rajgure AV, Inamdar AI, Devan RS, Kim IY, Suryavanshi SS, Ma YR, Kim JH, Patil PS (2013) Sens Actuators A 199:67CrossRefGoogle Scholar
  7. 7.
    Al-Homoudi IA, Thakur JS, Naik R, Auner GW, Newaz G (2007) Appl Surf Sci 253:8607CrossRefGoogle Scholar
  8. 8.
    Hoa ND, Quy NV, Tuan MA, Hieu NV (2009) Physica E 42:146CrossRefGoogle Scholar
  9. 9.
    Wang CY, Ali M, Kups T, Röhlig C-C, Cimalla V, Stauden T, Ambacher O (2008) Sens Actuators B 130:589CrossRefGoogle Scholar
  10. 10.
    Simon Q, Barreca D, Gasparotto A, Maccato C, Tondello E, Sada C, Comini E, Devi A, Fischer RA (2012) Nanotechnology 23:025502CrossRefGoogle Scholar
  11. 11.
    Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) Anal Chem 34:1502CrossRefGoogle Scholar
  12. 12.
    Wang YZ, Chu BL (2008) Superlattices Microstruct 44:54CrossRefGoogle Scholar
  13. 13.
    Lu H, Wang Y, Lin X (2009) Mater Lett 63:2321CrossRefGoogle Scholar
  14. 14.
    Majumder S, Hussain S, Bhar R, Pal AK (2007) Vacuum 81:985CrossRefGoogle Scholar
  15. 15.
    Tarwal NL, Shinde VV, Kamble AS, Jadhav PR, Patil DS, Patil VB, Patil PS (2011) Appl Surf Sci 257:10789CrossRefGoogle Scholar
  16. 16.
    Gurav KV, Fulari VJ, Patil UM, Lokhande CD (2010) Appl Surf Sci 256:2680CrossRefGoogle Scholar
  17. 17.
    Duan L, Lin B, Zhang W, Zhong S, Fu Z (2006) Appl Phys Lett 88:232110CrossRefGoogle Scholar
  18. 18.
    Sahu DR (2007) Microelectron J 38:1252CrossRefGoogle Scholar
  19. 19.
    Fan S-W, Srivastava AK, Dravid VP (2010) Sens Actuators B 144:159CrossRefGoogle Scholar
  20. 20.
    Navale SC, Ravi V, Mulla IS (2009) Sens Actuators B 139:466CrossRefGoogle Scholar
  21. 21.
    Zhu BL, Xie CS, Zeng DW, Song WL, Wang AH (2005) Mater Chem Phys 89:148CrossRefGoogle Scholar
  22. 22.
    Yu A, Qian J, Pan H, Cui Y, Xu M, Tu L, Chai Q, Zhou X (2011) Sens Actuators B 158:9CrossRefGoogle Scholar
  23. 23.
    Ge C, Xie C, Hu M, Gui Y, Bai Z, Zeng D (2007) Mater Sci Eng B 141:43CrossRefGoogle Scholar
  24. 24.
    Paraguay F, Miki-Yoshida M, Morales J, Solis J, Estrada W (2000) Thin Solid Films 373:137CrossRefGoogle Scholar
  25. 25.
    Hongsith N, Viriyaworasakul C, Mangkomtong P, Mangkorntong N, Choopun S (2008) Ceram Int 34:823CrossRefGoogle Scholar
  26. 26.
    Rout CS, Krishna SH, Vivekchand SRC, Govindaraj A, Rao CNR (2006) Chem Phys Lett 418:586CrossRefGoogle Scholar
  27. 27.
    Lin C-Y, Lai Y-H, Balamurugan A, Vittal R, Lin C-W, Ho KC (2010) Talanta 82:340CrossRefGoogle Scholar
  28. 28.
    Chen J, Yan X, Liu W, Xue Q (2011) Sens Actuators B 160:1499CrossRefGoogle Scholar
  29. 29.
    Xiang Q, Meng G, Zhang Y, Xu J, Xu P, Pan Q, Yu W (2010) Sens Actuators B 143:635CrossRefGoogle Scholar
  30. 30.
    Zhu G, Liu Y, Xu H, Chen Y, Shen X, Xu Z (2012) CrystEngComm 14:719CrossRefGoogle Scholar
  31. 31.
    Tarwal NL, Patil PS (2011) Electrochim Acta 56:6510CrossRefGoogle Scholar
  32. 32.
    Jeong NC, Prasittichai C, Hupp JT (2011) Langmuir 27:14609CrossRefGoogle Scholar
  33. 33.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden PrairieGoogle Scholar
  34. 34.
    Weaver JF, Hoflund GB (1994) Chem Mater 6:1693CrossRefGoogle Scholar
  35. 35.
    Sahay PP, Tewari S, Jha S, Shamsuddin M (2005) J Mater Sci 40:4791. doi: 10.1007/s10853-005-0519-9 CrossRefGoogle Scholar
  36. 36.
    Gurav KV, Deshmukh PR, Lokhande CD (2011) Sens Actuators B 151:365CrossRefGoogle Scholar
  37. 37.
    Kamble AS, Pawar RC, Tarwal NL, More LD, Patil PS (2011) Mater Lett 65:1488CrossRefGoogle Scholar
  38. 38.
    Pawar RC, Shaikh JS, Moholkar AV, Pawar SM, Kim JH, Patil JY, Suryavanshi SS, Patil PS (2010) Sens Actuators B 151:212CrossRefGoogle Scholar
  39. 39.
    Xu J, Zhang Y, Chen Y, Xiang Q, Pan Q, Shi L (2008) Mater Sci Eng B 150:55CrossRefGoogle Scholar
  40. 40.
    Sahay PP (2005) J Mater Sci 40:4383. doi: 10.1007/s10853-005-0738-0 CrossRefGoogle Scholar
  41. 41.
    Gao T, Wang TH (2005) Appl Phys A 80:1451CrossRefGoogle Scholar
  42. 42.
    Basu S, Basu PK (2009) J Sens 2009:861968Google Scholar
  43. 43.
    Lee M-K, Kim TG, Kim W, Sung Y-M (2008) J Phys Chem C 112:10079CrossRefGoogle Scholar
  44. 44.
    Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G, Tondello E (2011) J Phys Chem C 115:10510CrossRefGoogle Scholar
  45. 45.
    Chandrasekharan N, Kamat PV (2000) J Phys Chem B 104:10851CrossRefGoogle Scholar
  46. 46.
    Glasscock JA, Barnes PRF, Plumb IC, Savvides N (2007) J Phys Chem C 111:16477CrossRefGoogle Scholar
  47. 47.
    Zhang J, Colbow K (1997) Sens Actuators B 40:47CrossRefGoogle Scholar
  48. 48.
    Espinosa EH, Ionescu R, Bittencourt C, Felten A, Erni R, Vantendeloo G, Pireaux J-J, Llobet E (2007) Thin Solid Films 515:8322CrossRefGoogle Scholar
  49. 49.
    Balazsi C, Sedlackova K, Llobet E, Ionescu R (2008) Sens Actuators B 133:151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Research Institute for Solar and Sustainable Energies (RISE)Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Ferrite Materials Laboratory, School of Physical SciencesSolapur UniversitySolapurIndia
  3. 3.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  4. 4.Thin Film Photonic and Electronics Lab, Department of Materials Science and EngineeringChonnam National UniversityGwangjuRepublic of Korea
  5. 5.School of Information and CommunicationsGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea

Personalised recommendations