Journal of Materials Science

, Volume 48, Issue 20, pp 7253–7259 | Cite as

Density-controllable growth of SnO2 nanowire junction-bridging across electrode for low-temperature NO2 gas detection

  • Dang Thi Thanh Le
  • Nguyen Van DuyEmail author
  • Ha Minh Tan
  • Do Dang Trung
  • Nguyen Ngoc Trung
  • Phung Thi Hong Van
  • Nguyen Duc Hoa
  • Nguyen Van HieuEmail author


The junction-bridging structure of metal oxide nanowires (NWs) improves gas-sensing properties. In this study, an on-chip growth method was used to fabricate gas sensors, it easily and effectively controls NW junctions. SnO2 NWs were synthesized by thermal evaporation at 800 °C with tin powder as the source. The density of the NW junctions was controlled by changing the mass of the source material. A source material with large mass yielded high-density NW junctions. With electrode spacing of 20 μm, NW junctions were formed from the source material of larger than 2 mg. Gas sensing results revealed that the junction sensors exhibited a good response to NO2 gas at a concentration of 1–10 ppm. The sensors exhibited a good response to NO2 gas at low temperature of up to 100 °C and short response–recovery time (~20 s). The sensors also had good selectivity to NO2 gas. The response (R gas /R air) to 1 ppm NO2 was as high as 22 at 100 °C, whereas the cross gas responses (R air /R gas) to 10 ppm CO, 10 ppm H2S, 100 ppm C2H5OH, and 100 ppm NH3 were negligible (1.1–1.3).


SnO2 Sensor Resistance Sensor Sample SnO2 Nanowires Nanostructured Semiconductor Metal Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by the National Foundation for Science and Technology Development project of Vietnam (code 103.02-2011.46).


  1. 1.
    Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Crit Rev Solid State Mater Sci 29:111CrossRefGoogle Scholar
  2. 2.
    Jiménez-Cadena G, Riu J, Rius FX (2007) Analyst 132:1083CrossRefGoogle Scholar
  3. 3.
    Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H et al (2009) Sens Actuators B 139:699CrossRefGoogle Scholar
  4. 4.
    Park J-H, Lim D-G, Choi Y-J, Kim DW, Choi K-J, Park J-G (2007), Proceedings of the 7th IEEE international conference on nanotechnology, p 1054Google Scholar
  5. 5.
    Kim GB, Lim DG, Park HJ, Choi YJ, Park JG (2011) Appl Surf Sci 257:4715CrossRefGoogle Scholar
  6. 6.
    Ahn MW, Park KS, Heo JH, Kim DW, Choi KJ, Park JG (2009) Sens Actuators B Chem 138:168CrossRefGoogle Scholar
  7. 7.
    Choi YJ, Hwang IS, Park JG, Choi KJ, Park JH, Lee JH (2008) Nanotechnology 19:095508CrossRefGoogle Scholar
  8. 8.
    Thong LV, Loan LTN, Van Hieu N (2010) Sens Actuators B 112:112CrossRefGoogle Scholar
  9. 9.
    Li L, Zong F, Cui X, Ma H, Wu X, Zhang Q, Wang Y, Yang F, Zhao J (2007) Mater Lett 61:4152CrossRefGoogle Scholar
  10. 10.
    Park Y, Choi S, Kim SS (2011) J Phys Chem C 115:12774CrossRefGoogle Scholar
  11. 11.
    Calestani D, Zha M, Zappettini A (2005) Mater Sci Eng C 25:625CrossRefGoogle Scholar
  12. 12.
    Mulla IS, Ramgir NS, Hwang YK, Chang JS (2004) J Ind Eng Chem 10:1242Google Scholar
  13. 13.
    Comini E (2006) Analytica Chimica Acta 568:28CrossRefGoogle Scholar
  14. 14.
    Choi S-W, Jung S-H, Kim SS (2011) Nanotechnology 22:225501CrossRefGoogle Scholar
  15. 15.
    Kim H, An S, Jin C, Lee C (2012) Curr Appl Phys 12:1125CrossRefGoogle Scholar
  16. 16.
    Hwang IS, Choi YJ, Park JH, Park JG (2006) J Korean Phys Soc 49:1229Google Scholar
  17. 17.
    Choi SW, Jung SH, Kim SS (2011) J Hazard Mater 193:243CrossRefGoogle Scholar
  18. 18.
    Kanan SM, El-Kadri OM, Abu-Yousef I, Kanan MC (2009) Sensors 9:8158CrossRefGoogle Scholar
  19. 19.
    Van Hieu N, Duc NAP, Trung T, Tuan MA, Chien ND (2010) Sens Actuators B144:450Google Scholar
  20. 20.
    Barsan N, Koziej D, Weimar U (2007) Sens Actuators B 121:18CrossRefGoogle Scholar
  21. 21.
    Chambon L, Germain JP, Pauly A, Demarne V, Grisel A (2007) Sens Actuators B60:138Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dang Thi Thanh Le
    • 1
  • Nguyen Van Duy
    • 1
    Email author
  • Ha Minh Tan
    • 1
  • Do Dang Trung
    • 1
  • Nguyen Ngoc Trung
    • 2
  • Phung Thi Hong Van
    • 1
  • Nguyen Duc Hoa
    • 1
  • Nguyen Van Hieu
    • 1
    Email author
  1. 1.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.School of Engineering Physics (SEP)Hanoi University of Science and Technology (HUST)HanoiVietnam

Personalised recommendations