Advertisement

Journal of Materials Science

, Volume 48, Issue 20, pp 7184–7195 | Cite as

Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere

  • Pauline Briault
  • Mathilde RieuEmail author
  • Richard Laucournet
  • Bertrand Morel
  • Jean-Paul Viricelle
Article

Abstract

A single chamber solid oxide fuel cell (SC-SOFC) is a device able to produce electricity from a mixture of hydrocarbons and oxidant. An innovative application of this system would be to recover energy from exhaust gas of a thermal engine. This paper presents a study of stability and catalytic behaviour of electrode materials composing the cell in a mixture of hydrocarbons (propane, propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water corresponding to a composition of exhaust gas. A screening of four cathode materials was done, some well-known materials in literature and leading to highest performances such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), Sm0.5Sr0.5CoO3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ and a last one Pr2NiO4+δ (PNO) very promising for conventional SOFCs. Anode material was a cermet composed of nickel and Ce0.9Gd0.1O1.95 which was also selected as the electrolyte material. Chemical stability tests and catalytic activity studies in the gas mixture were performed on the raw materials and have led to a first selection among cathodes. Two hydrocarbons/oxygen ratios (R = HC/O2) were investigated for materials tests considering the gas mixture stability at high temperature (600 °C): R = 0.21 and 0.44. LSCF and PNO were considered as the most stable cathode materials, besides LSCF demonstrated a lower catalytic activity towards hydrocarbon partial oxidation than PNO especially for the R = 0.44 ratio. As for the anode side, nickel was tested regarding its catalytic activity towards hydrocarbons oxidation. It exhibited catalytic activity towards hydrocarbons partial oxidation, especially for the oxygen-lean ratio (0.44), which gradually decreased while lowering temperature from 620 to 450 °C.

Keywords

Cathode Material Partial Oxidation Solid Oxide Fuel Cell Propane Oxidation Quartz Wool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Funding for this project was provided by a grant from la Région Rhône-Alpes, France.

References

  1. 1.
    Hibino T, Ushiki K, Sato T, Kuwahara Y (1995) Solid State Ion 81:1CrossRefGoogle Scholar
  2. 2.
    Kuhn M, Napporn T (2010) Energies 3:57CrossRefGoogle Scholar
  3. 3.
    Kuhn M, Napporn T, Meunier M, Vengallatore S, Therriault D (2009) J Power Sources 194:941CrossRefGoogle Scholar
  4. 4.
    Herman GS, Mardilovich P, Champion D, Beatty C (2004) U.S. Patent US2004/0166386Google Scholar
  5. 5.
    Uchiyama N (2007) U.S. Patent JP2007/052388Google Scholar
  6. 6.
    Yano M, Hibino T, Nagao M, Okamoto K, Tomita A, Uchiyama Y, Uchiyama N (2008) Electrochem Solid State Lett 11:B29CrossRefGoogle Scholar
  7. 7.
    Nagao M, Yano M, Okamoto K, Tomita A, Uchiyama Y, Uchiyama N, Hibino T (2008) Fuel Cells 8:322CrossRefGoogle Scholar
  8. 8.
    Shao Z, Haile SM (2004) Nature 431:170CrossRefGoogle Scholar
  9. 9.
    Viricelle J-P, Udroiu S, Gadacz G, Pijolat M, Pijolat C (2010) Fuel Cells 10:683CrossRefGoogle Scholar
  10. 10.
    Rembelski D, Viricelle J-P, Combemale L, Rieu M (2012) Fuel Cells 12:256CrossRefGoogle Scholar
  11. 11.
    Shao Z, Zhang C, Wang W, Su C, Zhou W, Zhu Z, Park H, Kwak C (2011) Angew Chem Int Ed 50:1792CrossRefGoogle Scholar
  12. 12.
    Hibino T, Wang S, Kakimoto S, Sano M (1999) Electrochem Solid State Lett 2:317CrossRefGoogle Scholar
  13. 13.
    Shao Z, Haile SM, Ahn J, Ronney P, Zhan Z, Barnett S (2005) Nature 435:795CrossRefGoogle Scholar
  14. 14.
    Shao Z (2004) Solid State Ion 175:39CrossRefGoogle Scholar
  15. 15.
    Savoie S, Napporn T, Morel B, Meunier M, Roberge R (2011) J Power Sources 196:3713CrossRefGoogle Scholar
  16. 16.
    Gadacz G, Udroiu S, Viricelle J-P, Pijolat C, Pijolat M (2010) J Electrochem Soc 157:B1180CrossRefGoogle Scholar
  17. 17.
    Claridge JB, Green MLH, Tsang SC, York APE, Ashcroft AT, Battle PD (1993) Catal Lett 22:299CrossRefGoogle Scholar
  18. 18.
    Takenaka S, Ogihara H, Yamanaka I, Otsuka K (2001) Appl Catal A 217:101CrossRefGoogle Scholar
  19. 19.
    Lo Faro M, Antonucci V, Antonucci PL, Arico AS (2012) Fuel 102:554CrossRefGoogle Scholar
  20. 20.
    Ferchaud C, Grenier J-C, Zhang-Steenwinkel Y, van Tuel M, van Berkel F, Bassat J-M (2011) J Power Sources 196:1872CrossRefGoogle Scholar
  21. 21.
    Zhou X-D, Templeton JW, Nie Z, Chen H, Stevenson JW, Pederson LR (2012) Electrochim Acta 71:44CrossRefGoogle Scholar
  22. 22.
    Kovalevsky AV, Kharton VV, Yaremchenko AA, Pivak YV, Tsipis EV, Yakovlev SO, Markov AA, Naumovich EN, Frade JR (2007) J Electroceram 18:205CrossRefGoogle Scholar
  23. 23.
    Odier P (2000) J Solid State Chem 153:381CrossRefGoogle Scholar
  24. 24.
    Napporn TW, Morin F, Meunier M (2004) Electrochem Solid State Lett 7:A60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pauline Briault
    • 1
  • Mathilde Rieu
    • 1
    Email author
  • Richard Laucournet
    • 2
  • Bertrand Morel
    • 2
  • Jean-Paul Viricelle
    • 1
  1. 1.Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR5307, LGFSaint-ÉtienneFrance
  2. 2.French Alternative Energies and Atomic Energy Commission CEA-LITENGrenoble Cedex 9France

Personalised recommendations