Advertisement

Journal of Materials Science

, Volume 48, Issue 20, pp 7055–7062 | Cite as

Influence of poly(ethylene glycol) block length on the adsorption of thermoresponsive copolymers onto gold surfaces

  • Solmaz Bayati
  • Ramón PamiesEmail author
  • Sondre Volden
  • Kaizheng Zhu
  • Anna-Lena Kjøniksen
  • Wilhelm R. Glomm
  • Bo Nyström
Article

Abstract

The adsorption of a series of four poly(N-isopropylacrylamide)-based copolymers composed of a hydrophilic block of methoxy poly(ethylene glycol) (MPEG) with a variable length and a PNIPAAM block of fixed size (MPEG n -b-PNIPAAM71) onto flat and spherical citrate-coated gold surfaces has been investigated. The adsorption onto planar surfaces was studied by means of the quartz crystal microbalance with dissipation monitoring, whereas polymer adsorption onto gold nanoparticles was examined using dynamic light scattering and visible spectroscopy. Experiments were performed with two different concentrations of polymer in bulk solution, namely 0.05 and 0.0005 wt%. The influence of the MPEG length on the thickness of the adsorbed layer on the nanoparticles, and the adsorbed mass onto the planar surfaces were recorded at different temperatures.

Keywords

Dynamic Light Scattering Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Lower Critical Solution Temperature Gold Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

S. Volden, Wilhelm R. Glomm, B. Nyström, and K. Zhu gratefully acknowledge support from the Norwegian Research Council through a FRINAT project (177665/V30). R. Pamies was supported by grant CTQ2012-33717 from Ministerio de Ciencia y Competitividad.

References

  1. 1.
    Mirkin CA, Letsinger RL, Mucic RC (1996) Nature 382:607CrossRefGoogle Scholar
  2. 2.
    Brown S (2001) Nano Lett 1:391CrossRefGoogle Scholar
  3. 3.
    Cobbe S, Connolly S, Ryan D, Nagle L, Eritja R, Fitzmaurice D (2003) J Phys Chem B 107:470CrossRefGoogle Scholar
  4. 4.
    Hunter E, Fendler JH (2004) Adv Mater 16:1685CrossRefGoogle Scholar
  5. 5.
    Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) Adv Coll Interface Sci 134–135:167CrossRefGoogle Scholar
  6. 6.
    Volden S, Kjøniksen A-L, Zhu K, Genzer J, Nyström B, Glomm WR (2010) ACS Nano 4:1187CrossRefGoogle Scholar
  7. 7.
    Jian L, Prabhakaran MP, Qin X, Kai D, Ramakrishna S (2013) J Material Sci 48:5113CrossRefGoogle Scholar
  8. 8.
    Huang H, Yuan Q, Yang X (2004) Colloids Surf B 39:31CrossRefGoogle Scholar
  9. 9.
    Yoksan R, Chirachanchai S (2009) Mater Chem Phys 115:296CrossRefGoogle Scholar
  10. 10.
    Amirkhani M, Volden S, Zhu K, Glomm WR, Nyström B (2008) J Colloid Interface Sci 328:20CrossRefGoogle Scholar
  11. 11.
    Pamies R, Volden S, Kjøniksen A-L, Zhu K, Glomm WR, Nyström B (2010) Langmuir 26:15925CrossRefGoogle Scholar
  12. 12.
    Patakfalvi R, Viranyi Z, Dekany I (2004) Colloid Polym Sci 283:299CrossRefGoogle Scholar
  13. 13.
    Lei Z, Fan Y (2006) Mater Lett 60:2256CrossRefGoogle Scholar
  14. 14.
    Reznickova A, Kolska Z, Siegel J, Svorcik V (2012) J Mater Sci. doi: 10.1007/s10853-012-6550-8 Google Scholar
  15. 15.
    Förster S, Antonietti M (1998) Adv Mater 10:195CrossRefGoogle Scholar
  16. 16.
    Scarpa JS, Mueller DD, Klotz IM (1967) J Am Chem Soc 89:6024CrossRefGoogle Scholar
  17. 17.
    Heskins M, Gillet JE (1968) J Macromol Sci Chem A2:1441Google Scholar
  18. 18.
    Muthukumar M, Ober CK, Thomas EL (1997) Science 277:1225CrossRefGoogle Scholar
  19. 19.
    Zhu PW, Napper DH (1999) Macromolecules 32:2068CrossRefGoogle Scholar
  20. 20.
    Virtanen J, Holappa S, Lemmetyinen H, Tenhu H (2002) Macromolecules 35:4763CrossRefGoogle Scholar
  21. 21.
    Rzaev ZMO, Dinçer S, Pişki E (2007) Prog Polym Sci 32:534CrossRefGoogle Scholar
  22. 22.
    Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Prog Polym Sci 34:893CrossRefGoogle Scholar
  23. 23.
    Schild HG (1992) Prog Polym Sci 17:163CrossRefGoogle Scholar
  24. 24.
    Pamies R, Zhu K, Kjøniksen A-L, Nyström B (2009) Polym Bull 62:487CrossRefGoogle Scholar
  25. 25.
    Zhu K, Pamies R, Kjøniksen A-L, Nyström B (2008) Langmuir 24:14227CrossRefGoogle Scholar
  26. 26.
    Jeon SL, Lee JH, Andrade JD, De Gennes PG (1991) J Colloid Interface Sci 142:149CrossRefGoogle Scholar
  27. 27.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) Langmuir 17:5606Google Scholar
  28. 28.
    Zhu K, Jin H, Kjøniksen AL, Nyström B (2007) J Phys Chem B 111:10862CrossRefGoogle Scholar
  29. 29.
    Wang JS, Matyjaszewski K (1995) J Am Chem Soc 117:5614CrossRefGoogle Scholar
  30. 30.
    Matyjaszewski K, Xia J (2001) Chem Rev 101:2921CrossRefGoogle Scholar
  31. 31.
    Siegert AJF (1943) Massachusetts Institute of Technology, Radiation Laboratory Report no. 465Google Scholar
  32. 32.
    Xia Y, Burke AD, Stöver HD (2006) Macromolecules 39:2275CrossRefGoogle Scholar
  33. 33.
    Kjøniksen A-L, Zhu K, Karlsson G, Nyström B (2009) Colloids Surf A 333:32CrossRefGoogle Scholar
  34. 34.
    Volden S, Trinh LTT, Kjøniksen A-L, Nyström B, Yasuda BM, Glomm WR (2011) J Phys Chem C 115:11390CrossRefGoogle Scholar
  35. 35.
    Pamies R, Zhu K, Volden S, Kjøniksen A-L, Karlsson G, Glomm WR, Nyström B (2010) J Phys Chem C 114:21960CrossRefGoogle Scholar
  36. 36.
    Jensen T, Kelly L, Lazarides A, Schatz GC (1999) J Clust Sci 10:295CrossRefGoogle Scholar
  37. 37.
    Rodríguez Schmidt R, Pamies R, Kjøniksen A-L, Zhu K, Hernández Cifre JG, Nyström B, García de la Torre J (2010) J Phys Chem B 114:8887CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Solmaz Bayati
    • 1
    • 7
  • Ramón Pamies
    • 2
    • 3
    Email author
  • Sondre Volden
    • 4
  • Kaizheng Zhu
    • 1
  • Anna-Lena Kjøniksen
    • 5
    • 6
  • Wilhelm R. Glomm
    • 4
  • Bo Nyström
    • 1
  1. 1.Department of ChemistryUniversity of OsloOsloNorway
  2. 2.Departamento de Ingeniería de Materiales y FabricaciónRegional Campus of International Excellence “Campus Mare Nostrum”, Technical University of CartagenaMurciaSpain
  3. 3.Departamento de Química FísicaUniversity of MurciaMurciaSpain
  4. 4.Ugelstad Laboratory, Department of Chemical EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.Faculty of EngineeringØstfold University CollegeHaldenNorway
  6. 6.Department of PharmaceuticsSchool of Pharmacy, University of OsloOsloNorway
  7. 7.Division of Physical Chemistry, Department of ChemistryCenter for Chemistry and Chemical Engineering, Lund UniversityLundSweden

Personalised recommendations