Journal of Materials Science

, Volume 48, Issue 22, pp 7837–7846 | Cite as

Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective

  • You-Lo HsiehEmail author
Polymer Fibers


Cellulose nanocrystals (CNCs) have been derived by sulfuric acid hydrolysis (64–65 wt% H2SO4, 10 mL/g cellulose, 45 °C) of pure cellulose isolated from cotton, rice straw and grape skin, producing relatively consistent products in 60, 45 and 30 min, respectively, and generally reflecting the extent of crystallinity and crystallite sizes of these cellulose sources. CNCs in nanorod forms are observed from all three cellulose sources and, in the case of cotton and grape skin, in the presence of more dominant forms of nanoparticles. Cotton CNCs are <10-nm-wide nanorods at up to 40 aspect ratios, whereas rice straw CNCs are flat ribbon cross-sectional shaped in 10:2:1–44:5:1 length/width/thickness ratios, and those from grape skin are abundant nanoparticles but fewer nanorods, all of very different nanoscale dimensions. Freezing (−196 °C) and freeze-drying (−50 °C) of dilute CNC suspensions induce self-assembling of these CNC populations into yet further distinctly different morphologies. Self-assembled cotton CNCs are loosely organized nanorods and nanospheres, whereas grape skin CNCs are mainly nanospheres of 5-nm-sized nanoparticles clusters around nanorod cores. Uniquely, rice straw CNCs assembled anisotropically into ultra-thin non-porous fibers. These source-linked unique CNC geometries and the ability of CNCs to self-assemble into different morphologies present wide ranging dimensions of these renewable cellulose nanomaterial building blocks from by-products of the world largest fiber, cereal and fruit crops.


Cellulose Rice Straw Hydrolysis Time Cellulose Nanocrystals Pure Cellulose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author appreciates the fine experimental work by Ping Lu and Feng Jiang and funding from the California Rice Research Board, the National Textile Center and US Department of Agriculture, National Institute of Food and Agriculture.

Supplementary material

10853_2013_7512_MOESM1_ESM.docx (6.3 mb)
Supplementary material 1 (DOCX 6413 kb)


  1. 1.
    Saxena IM, Brown RM Jr (2005) Ann Bot 96(1):9. doi: 10.1093/aob/mci155 CrossRefGoogle Scholar
  2. 2.
    Hanley SJ, Giasson J, Revol JF, Gray DG (1992) Polymer 33(21):4639. doi: 10.1016/0032-3861(92)90426-W CrossRefGoogle Scholar
  3. 3.
    Terech P, Chazeau L, Cavaille JY (1999) Macromolecules 32(6):1872. doi: 10.1021/ma9810621 CrossRefGoogle Scholar
  4. 4.
    Grunert M, Winter WT (2002) J Polym Environ 10(1/2):27. doi: 10.1023/A:1021065905986 CrossRefGoogle Scholar
  5. 5.
    Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromolecules 6(2):1048. doi: 10.1021/bm049300p CrossRefGoogle Scholar
  6. 6.
    Lu P, Hsieh Y-L (2010) Carbohydr Polym 82(1):329. doi: 10.1016/j.carbpol.2010.04.073 CrossRefGoogle Scholar
  7. 7.
    Samir MASA, Alloin F, Dufresne A (2005) Biomacromolecules 6(2):612. doi: 10.1021/bm0493685 CrossRefGoogle Scholar
  8. 8.
    Helbert W, Cavaille JY, Dufresne A (1996) Polym Compost 17(4):604. doi: 10.1002/pc.10650 CrossRefGoogle Scholar
  9. 9.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57(165):651. doi: 10.1002/pol.1962.1205716551 CrossRefGoogle Scholar
  10. 10.
    Sturcova A, Davies GR, Eichhorn SJ (2005) Biomacromolecules 6(2):1055. doi: 10.1021/bm049291k CrossRefGoogle Scholar
  11. 11.
    Wong EW, Sheehan PE, Lieber CM (1997) Science 277(5334):1971. doi: 10.1126/science.277.5334.1971 CrossRefGoogle Scholar
  12. 12.
    Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287(5453):637. doi: 10.1126/science.287.5453.637 CrossRefGoogle Scholar
  13. 13.
    Klemm D, Kramer F, Moritz S, Lindström Ankerfors TM, Gray D et al (2011) Angew Chem Int Ed 50:5438. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  14. 14.
    Production Statistics, Food and Agriculture Organization of the United Nations,
  15. 15.
    Hsieh Y-L (2006) In: Gordon S, Hsieh Y-L (eds) Cotton science and technology. Woodhead Publishing Ltd, CambridgeGoogle Scholar
  16. 16.
    Karimi K, Kheradmandinia S, Taherzadeh MJ (2006) Biomass Bioenergy 30(3):247. doi: 10.1016/j.biombioe.2005.11.015 CrossRefGoogle Scholar
  17. 17.
    Spigno G, Pizzorno T, De Faveri DM (2008) Bioresour Technol 99(10):4329. doi: 10.1016/j.biortech.2007.08.044 CrossRefGoogle Scholar
  18. 18.
    Prozil SO, Evtuguin DV, Lopes LPC (2012) Ind Crops Prod 35(1):178. doi: 10.1016/j.indcrop.2011.06.035 CrossRefGoogle Scholar
  19. 19.
    Lu P, Hsieh Y-L (2012) Carbohydr Polym 87(1):564. doi: 10.1016/j.carbpol.2011.08.022 CrossRefGoogle Scholar
  20. 20.
    Lu P, Hsieh Y-L (2012) Carbohydr Polym 87(4):2546. doi: 10.1016/j.carbpol.2011.11.023 CrossRefGoogle Scholar
  21. 21.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9(1):57. doi: 10.1021/bm700769p CrossRefGoogle Scholar
  22. 22.
    Jiang F, Esker AR, Roman M (2010) Langmuir 26(23):17919. doi: 10.1021/la1028405 CrossRefGoogle Scholar
  23. 23.
    Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Langmuir 26(6):4480. doi: 10.1021/la903111j CrossRefGoogle Scholar
  24. 24.
    Cheng RS, Wang N, Ding E (2008) Langmuir 24(1):5. doi: 10.1021/la702923w CrossRefGoogle Scholar
  25. 25.
    Ragauskas AJ, Zhang JG, Elder TJ, Pu YQ (2007) Carbohydr Polym 69(3):607. doi: 10.1016/j.carbpol.2007.01.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Fiber and Polymer ScienceUniversity of California, DavisDavisUSA

Personalised recommendations