Advertisement

Journal of Materials Science

, Volume 48, Issue 20, pp 6960–6969 | Cite as

(111)-Oriented Co0.8Fe2.2O4+δ thin film grown by pulsed laser deposition: structural and magnetic properties

  • M. KhodaeiEmail author
  • S. A. Seyyed Ebrahimi
  • Yong Jun Park
  • Sun Hee Choi
  • CheolGi Kim
  • Junwoo Son
  • Sunggi Baik
Article

Abstract

The perfect (111)-oriented Co0.8Fe2.2O4+δ thin films were grown on Pt(111)/Si substrate by pulsed laser deposition technique. Co0.8Fe2.2O4+δ film grown at oxygen pressure of 10 mTorr (optimum condition) has the highest (111)-orientation degree, the lowest surface roughness, uniformly compacted nanosize grain-feature structure (50–80 nm), and the highest magnetization. The Fe K-edge X-ray absorption near edge structure analyses revealed that, in Fe-doped CoFe2O4 film, the Fe also exists as Fe3+ (Co0.8Fe2.2O4+δ ), which affects the lattice parameter as well as magnetic properties. The magnetic properties (saturation magnetization, coercivity, and squareness) of Co0.8Fe2.2O4+δ thin film are significantly higher than those of CoFe2O4 film. Moreover, the (111)-oriented Co0.8Fe2.2O4+δ thin film demonstrates strong in-plane magnetic anisotropy, which results from orientation, as well as the stress-induced magnetic anisotropy.

Keywords

Ferrite Magnetic Anisotropy CoFe2O4 Magnetocrystalline Anisotropy Cobalt Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

M. K. author is grateful for the financial support from Department of Materials Science & Engineering, and Ferroelectric Nano Materials Lab at POSTECH.

References

  1. 1.
    Ramos AV, Santos TS, Miao GX, Guittet MJ, Moussy JB, Moodera JS (2008) Phys Rev B 78:180402CrossRefGoogle Scholar
  2. 2.
    Stichauer L, Gavoille G, Simsa Z (1996) J Appl Phys 79:3645CrossRefGoogle Scholar
  3. 3.
    Jiles DC, Lo CCH (2003) Sensors Actuators A 106:3CrossRefGoogle Scholar
  4. 4.
    Yan L, Yang Y, Wang Z, Xing Z, Li J, Viehland D (2009) J Mater Sci 44:5080. doi: 10.1007/s10853-009-3679-1 CrossRefGoogle Scholar
  5. 5.
    Shi M, Yu GY, Su HL, Zuo RZ, Xu YD, Wu G, Wang L (2011) J Mater Sci 46:4710. doi: 10.1007/s10853-011-5381-3 CrossRefGoogle Scholar
  6. 6.
    Ma J, Hu J, Li Z, Nan CW (2011) Adv Mater 23:1062CrossRefGoogle Scholar
  7. 7.
    Sawatzky GA, Van der Woude F, Morrish AH (1969) Phys Rev 187:747CrossRefGoogle Scholar
  8. 8.
    Hu G, Choi JH, Eom CB, Harris VG, Suzuki Y (2000) Phys Rev B 62:R779CrossRefGoogle Scholar
  9. 9.
    Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE, HobokenGoogle Scholar
  10. 10.
    Júnior AF, Zapf V, Egan P (2007) J Appl Phys 101:09M506CrossRefGoogle Scholar
  11. 11.
    Nlebedim IC, Snyder JE, Moses AJ, Jiles DC (2012) IEEE Trans Magn 48:3084CrossRefGoogle Scholar
  12. 12.
    Tachiki M (1960) Prog Theor Phys 23:1055CrossRefGoogle Scholar
  13. 13.
    Li Y, Fang Q, Liu Y, Lv Q, Yin P (2007) J Magn Magn Mater 313:57CrossRefGoogle Scholar
  14. 14.
    Zi ZF, Zhang SB, Wang B, Zhu XB, Yang ZR, Dai JM, Song WH, Sun YP (2010) J Magn Magn Mater 322:148CrossRefGoogle Scholar
  15. 15.
    Gu BX, Hua ZH (2006) J Magn Magn Mater 299:392CrossRefGoogle Scholar
  16. 16.
    Moyer JA, Vaz CAF, Negusse E, Arena DA, Henrich VE (2011) Phys Rev B 83:035121CrossRefGoogle Scholar
  17. 17.
    Moyer JA, Vaz CAF, Arena DA, Kumah D, Negusse E, Henrich VE (2011) Phys Rev B 84:054447CrossRefGoogle Scholar
  18. 18.
    Moyer JA, Vaz CAF, Negusse E, Arena DA, Henrich VE (2012) Phys Rev B 86:174404CrossRefGoogle Scholar
  19. 19.
    Lisfi A, Williams CM, Nguyen LT, Lodder JC, Coleman A, Corcoran H, Johnson A, Chang P, Kumar A, Morgan W (2007) Phys Rev B 76:054405CrossRefGoogle Scholar
  20. 20.
    Yin JH, Ding J, Liu BH, Yi JB, Miao XS, Chen JS (2007) J Appl Phys 101:09K509CrossRefGoogle Scholar
  21. 21.
    Dhakal T, Mukherjee D, Hyde R, Mukherjee P, Phan MH, Srikanth H, Witanachchi S (2010) J Appl Phys 107:053914CrossRefGoogle Scholar
  22. 22.
    Mukherjee D, Dhakal T, Phan M, Srikanth H, Mukherjee P, Witanachchi S (2011) Phys B 406:2663CrossRefGoogle Scholar
  23. 23.
    Raghunathan A, Nlebedim IC, Jiles DC, Snyder JE (2010) J Appl Phys 107:09A516CrossRefGoogle Scholar
  24. 24.
    Khodaei M, Seyyed Ebrahimi SA, Park YJ, Ok JM, Kim JS, Son J, Baik S (2013) J Magn Magn Mater 340:16CrossRefGoogle Scholar
  25. 25.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537CrossRefGoogle Scholar
  26. 26.
    Hassan RS, Viart N, Ulhaq-Bouillet C, Loison JL, Versini G, Vola JP, Créguta O, Pourroy G, Muller D, Chateigner D (2007) Thin Solid Films 515:2943CrossRefGoogle Scholar
  27. 27.
    Mishra RK, Thomas G (1977) J Appl Phys 48:4576CrossRefGoogle Scholar
  28. 28.
    Luders U, Bibes M, Bobo JF, Fontcuberta J (2005) Appl Phys A 80:427CrossRefGoogle Scholar
  29. 29.
    Sorescu M, Grabias A, Tarabasanu-Mihaila D, Diamandescu L (2001) J Mater Synth Proc 9:119CrossRefGoogle Scholar
  30. 30.
    Jang JS, Kim DH, Choi SH, Jang JW, Kim HG, Lee JS (2012) Int J Hydrogen Energy 37:11081CrossRefGoogle Scholar
  31. 31.
    Papakonstantinou P, O’Neill MC, Atkinson R, Al-Wazzan R, Morrow T, Salter IW (1998) J Magn Magn Mater 189:120CrossRefGoogle Scholar
  32. 32.
    Raghunathan A, Jiles DC, Snyder JE (2011) J Appl Phys 109:083922CrossRefGoogle Scholar
  33. 33.
    Zhou J, He H, Nan CW (2007) Appl Surf Sci 253:7456CrossRefGoogle Scholar
  34. 34.
    Suzuki Y, Hu G, van Dover RB, Cava RJ (1999) J Magn Magn Mater 191:1CrossRefGoogle Scholar
  35. 35.
    Rigato F, Geshev J, Skumryev V, Fontcuberta J (2009) J Appl Phys 106:113924CrossRefGoogle Scholar
  36. 36.
    Margulies DT, Parker FT, Rudee ML, Spada FE, Chapman JN, Aitchison PR, Berkowitz AE (1997) Phys Rev Lett 79:5162CrossRefGoogle Scholar
  37. 37.
    Chen Z, Yang A, Yoon SD, Ziemer K, Vittoria C, Harris VG (2006) J Magn Magn Mater 301:166CrossRefGoogle Scholar
  38. 38.
    Papakonstantinou P, O’Neill M, Atkinson R, Salter IW, Gerber R (1996) J Magn Magn Mater 152:401CrossRefGoogle Scholar
  39. 39.
    Stoner EC, Wohlfarth EP (1948) Phil Trans R Soc Lond A 240:599CrossRefGoogle Scholar
  40. 40.
    Coey J (2010) Magnetism and magnetic materials. Cambridge University Press, New YorkCrossRefGoogle Scholar
  41. 41.
    Seifikar S, Tabei A, Sachet A, Rawdanowicz T, Bassiri-Gharb N, Schwartz J (2012) J Appl Phys 112:063908CrossRefGoogle Scholar
  42. 42.
    Gao XS, Bao DH, Birajdar B, Habisreuther T, Mattheis R, Schubert MA, lexe M, Hesse D (2009) J Phys D: Appl Phys 42:175006CrossRefGoogle Scholar
  43. 43.
    Bozorth RM, Tilden EF, Williams AJ (1955) Phys Rev 99:1788CrossRefGoogle Scholar
  44. 44.
    Wang XW, Zhang YQ, Meng H, Wang ZJ, Zhang ZD (2011) J Alloys Compd 509:7803CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Khodaei
    • 1
    • 2
    Email author
  • S. A. Seyyed Ebrahimi
    • 1
  • Yong Jun Park
    • 4
  • Sun Hee Choi
    • 4
  • CheolGi Kim
    • 5
  • Junwoo Son
    • 3
  • Sunggi Baik
    • 3
  1. 1.Center of Excellence for Magnetic Materials, School of Metallurgy and Materials, Faculty of EngineeringUniversity of TehranTehranIran
  2. 2.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangKorea
  3. 3.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangKorea
  4. 4.Pohang Accelerator LaboratoryPohang University of Science and Technology (POSTECH)PohangKorea
  5. 5.Center for NanoBioEngineering and Spintronics, Department of Materials Science and EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations