Skip to main content
Log in

The reason for an upper limit to the height of spinnable carbon nanotube forests

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The reason for the upper limit on the height of spinnable carbon nanotube (CNT) forests was studied. To analyze the differences between CNT forests with different heights, we synthesized CNT forests using different growth times (3, 6, 9, 12, 15, and 60 min). The height of the CNT forests increased from 260 μm at 3 min to 1.7 mm at 60 min, and the spinnability decreased sharply after 9 min of growth, where a wavy morphology first appeared. Raman analysis of the CNT forest grown for 9 min showed that the intensity ratio of G-band to D-band at the upper region was 1.50 and that near the bottom was 1.14. We also found that the reaction termination process affected the spinnability of the CNT forests. Depending on the termination process, both spinnable and non-spinnable CNT forests could be selectively synthesized, because of the different morphologies in their lower regions. The results suggested that any wavy morphology produced due to a disturbance in growth conditions causes a loss of spinnability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang KL, Li QQ, Fan SS (2002) Nature 419(6909):801. doi:10.1038/419801a

    Article  CAS  Google Scholar 

  2. Park J, Lee K-H (2012) Korean J Chem Eng 29(3):277. doi:10.1007/s11814-012-0016-1

    Article  CAS  Google Scholar 

  3. Zhang M, Atkinson KR, Baughman RH (2004) Science 306(5700):1358. doi:10.1126/science.1104276

    Article  CAS  Google Scholar 

  4. Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S (2006) Adv Mater 18(12):1505. doi:10.1002/adma.200502528

    Article  CAS  Google Scholar 

  5. Kim JH, Jang HS, Lee KH, Overzet LJ, Lee GS (2010) Carbon 48(2):538. doi:10.1016/j.carbon.2009.09.075

    Article  CAS  Google Scholar 

  6. Huynh CP, Hawkins SC (2010) Carbon 48(4):1105

    Article  CAS  Google Scholar 

  7. Zhang Q, Wang DG, Huang JQ, Zhou WP, Luo GH, Qian WZ, Wei F (2010) Carbon 48(10):2855. doi:10.1016/j.carbon.2010.04.017

    Article  CAS  Google Scholar 

  8. Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA (2011) ACS Nano 5(2):985. doi:10.1021/Nn102405u

    Article  CAS  Google Scholar 

  9. Iijima T, Oshima H, Hayashi Y, Suryavanshi UB, Hayashi A, Tanemura M (2012) Diam Relat Mater 24:158. doi:10.1016/j.diamond.2012.01.002

    Article  CAS  Google Scholar 

  10. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) Science 318(5858):1892. doi:10.1126/science.1147635

    Article  CAS  Google Scholar 

  11. Lu WB, Zu M, Byun JH, Kim BS, Chou TW (2012) Adv Mater 24(14):1805. doi:10.1002/adma.201104672

    Article  CAS  Google Scholar 

  12. Lee IH, Han GH, Chae SJ, Bae JJ, Kim ES, Kim SM, Kim TH, Jeong HK, Lee YH (2010) NANO 5(1):31. doi:10.1142/S1793292010001809

    Article  CAS  Google Scholar 

  13. Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT (2006) Adv Mater 18(23):3160. doi:10.1002/adma.200601344

    Article  CAS  Google Scholar 

  14. Jia JJ, Zhao JN, Xu G, Di JT, Yong ZZ, Tao YY, Fang CO, Zhang ZG, Zhang XH, Zheng LX, Li QW (2011) Carbon 49(4):1333. doi:10.1016/j.carbon.2010.11.054

    Article  CAS  Google Scholar 

  15. Fallah Gilvaei A, Hirahara K, Nakayama Y (2011) Carbon 49(14):4928. doi:10.1016/j.carbon.2011.07.017

    Article  CAS  Google Scholar 

  16. Zhang YY, Zou GF, Doorn SK, Htoon H, Stan L, Hawley ME, Sheehan CJ, Zhu YT, Jia QX (2009) ACS Nano 3(8):2157. doi:10.1021/Nn9003988

    Article  CAS  Google Scholar 

  17. Zhang YY, Gregoire JM, van Dover RB, Hart AJ (2010) J Phys Chem C 114(14):6389. doi:10.1021/Jp100358j

    Article  CAS  Google Scholar 

  18. Zhang Q, Zhou WP, Qian WZ, Xiang R, Huang JQ, Wang DZ, Wei F (2007) J Phys Chem C 111(40):14638. doi:10.1021/Jp073218h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the second phase BK21 program of the Ministry of Education of Korea and the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (Grant No. 2012-0000115). The authors also thank POSCO for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Hong Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7607 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Oh, E., Kim, HJ. et al. The reason for an upper limit to the height of spinnable carbon nanotube forests. J Mater Sci 48, 6897–6904 (2013). https://doi.org/10.1007/s10853-013-7494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7494-3

Keywords

Navigation