Advertisement

Journal of Materials Science

, Volume 48, Issue 19, pp 6825–6832 | Cite as

Effect of cold-rolling on the crystallization behavior of a CuZr-based bulk metallic glass

  • G. Z. MaEmail author
  • K. K. Song
  • B. A. Sun
  • Z. J. Yan
  • U. Kühn
  • D. ChenEmail author
  • J. EckertEmail author
Article

Abstract

The effect of pre-existing shear bands induced by cold-rolling on the crystallization behavior was investigated in the Cu46Zr46Al8 bulk metallic glass. It was found that with increasing degree of pre-deformation, more shear bands are created resulting in the decrease of the crystallization activation energy for the alloy. Our experimental results demonstrate that pre-existing shear bands can promote the nucleation of crystals, which is discussed in terms of nucleation thermodynamics and kinetics aspects.

Keywords

Shear Band Crystallization Behavior Bulk Metallic Glass Diffusion Activation Energy Supercooled Liquid Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank for the financial support from the China Scholarship Council (CSC). The authors gratefully acknowledge B. Bartusch, S. Donath, and M. Frey for technical assistance. We also thank S. L. Li from IIN for the help with modifying figures in this paper. The discussion with Y. Zhang and J. He in the IFW is also appreciated.

References

  1. 1.
    Zhang Y, Wang WH, Greer AL (2006) Nat Mater 5:857CrossRefGoogle Scholar
  2. 2.
    Hofmann DC, Suh JY, Wiest A, Duan G, Johnson WL (2008) Nature 451:1085CrossRefGoogle Scholar
  3. 3.
    Nakayama KS, Yokoyama Y, Chen MW, Inoue A (2010) Adv Mater 22:872CrossRefGoogle Scholar
  4. 4.
    Ye JC, Lu J, Yang Y, Liaw PK (2009) Acta Mater 57:6037CrossRefGoogle Scholar
  5. 5.
    Ma E, Zhang Z (2011) Nat Mater 10:10CrossRefGoogle Scholar
  6. 6.
    Pauly S, Gorantla S, Wang G, Kühn U, Eckert J (2010) Nat Mater 9:473CrossRefGoogle Scholar
  7. 7.
    Cheng YQ, Ma E, Sheng HW (2009) Phys Rev Lett 102:245501CrossRefGoogle Scholar
  8. 8.
    Eckert J, Das J, Kim KB, Wang WH, Zhang ZF (2006) Intermetallics 14:876CrossRefGoogle Scholar
  9. 9.
    Lewandowski JJ, Greer AL (2006) Nat Mater 5:15CrossRefGoogle Scholar
  10. 10.
    Sun BA, Yu HB, Bai HY, Wang WH (2010) Phys Rev Lett 105:035501CrossRefGoogle Scholar
  11. 11.
    Xing DW, Yang YJ, Shen J (2008) Mater Lett 62:44CrossRefGoogle Scholar
  12. 12.
    Sun BA, Pauly S, Tan J, Stoica M, Wang WH, Eckert J (2012) Acta Mater 60:4160CrossRefGoogle Scholar
  13. 13.
    Rodney D, Schuh C (2009) Phys Rev Lett 102:235503CrossRefGoogle Scholar
  14. 14.
    Lee MH, Lee KS, Das J, Thomas J, Eckert J (2010) Scripta Mater 62:678CrossRefGoogle Scholar
  15. 15.
    Song KK, Pauly S, Zhang Y, Kühn U, Stoica M, Eckert J (2011) Acta Mater 59:6620CrossRefGoogle Scholar
  16. 16.
    Cao QP, Liu JW, Yang KJ, Yao ZQ, Jiang JZ (2010) Acta Mater 58:1276CrossRefGoogle Scholar
  17. 17.
    Yao KF, Ruan F, Yang YQ, Chen N (2006) Appl Phys Lett 88:122106CrossRefGoogle Scholar
  18. 18.
    Yokoyama Y, Yamasaki T, Inoue A (2008) Rev Adv Mater Sci 18:131Google Scholar
  19. 19.
    Xie S, George EP (2008) Acta Mater 56:5202CrossRefGoogle Scholar
  20. 20.
    Scudino S, Surreddi KB, Eckert J (2010) Phys Status Solidi A 207:1118CrossRefGoogle Scholar
  21. 21.
    Yu HB, Hu J, Sun BA, Wang WH, Bai HY (2009) Scripta Mater 61:640CrossRefGoogle Scholar
  22. 22.
    Lee MH, Lee JK, Thomas J, Das J, Eckert J (2009) Phys Status Solidi A 3:46Google Scholar
  23. 23.
    Eckert J, Das J, Duhamel C (2007) J Mater Res 22:285CrossRefGoogle Scholar
  24. 24.
    Jin HJ, Zhou F, Wang LB, Lu K (2001) Scripta Mater 44:1083CrossRefGoogle Scholar
  25. 25.
    Xu DH, Lohwongwatana B, Duan G, Johnson WL (2004) Acta Mater 52:2621CrossRefGoogle Scholar
  26. 26.
    Pauly S, Liu G, Wang G, Eckert J (2009) Acta Mater 57:5445CrossRefGoogle Scholar
  27. 27.
    Wang ZX, Li FY, Pan MX, Wang WH (2005) J Alloys Compd 388:262CrossRefGoogle Scholar
  28. 28.
    Weinberg MC, He DW, Zhao DQ, Yao YS (1999) Appl Phys Lett 88:2770Google Scholar
  29. 29.
    Chen HS, Non-Cryst J (1978) Solids 27:257Google Scholar
  30. 30.
    Greer AL (1996) Mater Sci Eng A 179–180:41Google Scholar
  31. 31.
    Park JS, Lim HK, Kim JH, Park JM, Kim DH (2005) J Mater Sci 40:1937. doi: 10.1007/s10853-005-1214-6 CrossRefGoogle Scholar
  32. 32.
    Cheung TL, Shek CH, Alloys J (2007) J Alloy Compd 71:434CrossRefGoogle Scholar
  33. 33.
    Yu P, Bai HY, Tang MB, Wang WL, Non-Cryst J (2005) Solids 351:1328Google Scholar
  34. 34.
    Inoue A, Zhang W (2002) Mater Trans 43(11):2921CrossRefGoogle Scholar
  35. 35.
    He L, Zhong MB, Han ZH, Sun J (2008) Mater Sci Eng A 496:285CrossRefGoogle Scholar
  36. 36.
    Zhang ZF, He G, Zhang H, Eckert J (2005) Scripta Mater 52:945CrossRefGoogle Scholar
  37. 37.
    Park JM, Wang G, Li R, Eckert J, Kim DH (2010) Appl Phys Lett 96:031905CrossRefGoogle Scholar
  38. 38.
    Chen H, He Y, Shiflet GJ, Poon SJ (1994) Nature 367:541CrossRefGoogle Scholar
  39. 39.
    Ko BC, Wesseling P, Shiflet GJ, Lewandowski JJ (2002) Intermetallics 10:1099CrossRefGoogle Scholar
  40. 40.
    Wesseling P, Ko BC, Shiflet GJ, Lewandowski JJ (2008) Metall Mater Trans A 39:1935CrossRefGoogle Scholar
  41. 41.
    Yao B, Guo HC, Wang J, Ding BZ, Li H, Wang AM, Hu ZQ (1996) Phys B 228:379CrossRefGoogle Scholar
  42. 42.
    Gu XJ, Ye F, Zhou F, Lu K (2000) Mater Sci Eng A 61:278Google Scholar
  43. 43.
    Wang WH, He DW, Zhao DQ, Yao YS (1999) Appl Phys Lett 75:2770CrossRefGoogle Scholar
  44. 44.
    Ye F, Lu K (1998) Acta Mater 46:5965CrossRefGoogle Scholar
  45. 45.
    Imura T, Suwa M, Fuji K (1988) Mater Sci Eng 97:247CrossRefGoogle Scholar
  46. 46.
    Jiang JZ, Zhou TJ, Rasmussen H, Kühn U, Eckert J (2000) Appl Phys Lett 77:3553CrossRefGoogle Scholar
  47. 47.
    Hwang JW, Melgarejo ZH, Kalay YE, Voyles PM (2012) Phys Rev Lett 108:195505CrossRefGoogle Scholar
  48. 48.
    Kissinger HE (1956) J Res Nat Bur Stand 57(4):217CrossRefGoogle Scholar
  49. 49.
    Jiang QK, Wang XD, Nie XP, Cao QP, Jiang JZ (2008) Acta Mater 56:1785CrossRefGoogle Scholar
  50. 50.
    Jiang WH, Liu FX, Liao HH, Choo H, Liaw PK (2008) J Mater Res 23:2967CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Wang WH, Lewandowski JJ, Greer AL (2007) J Mater Res 22(2):419CrossRefGoogle Scholar
  52. 52.
    H. S. Chen (1992) Thesis, University of VirginiaGoogle Scholar
  53. 53.
    Perepezko JH, Wilde G, Non-Cryst J (2000) Solids 274:271Google Scholar
  54. 54.
    Yousuf M, Rajan KG (1984) J Mater Sci Lett 3:149CrossRefGoogle Scholar
  55. 55.
    Porter DA, Easterling KE (1981) Phase transformation in metals and alloys. Van Nostrand Reinhold, New YorkGoogle Scholar
  56. 56.
    Bokeloh J, Divinski SV, Reglitz G, Wilde G (2011) Phys Rev Lett 107:235503CrossRefGoogle Scholar
  57. 57.
    Johnson WL, Samwer K (2005) Phys Rev Lett 95:195501CrossRefGoogle Scholar
  58. 58.
    Malandro DL, Lacks DJ (1999) J Chem Phys 110:4593CrossRefGoogle Scholar
  59. 59.
    Song KK, Pauly S, Zhang Y, Eckert J (2011) Intermetallics 19:1394CrossRefGoogle Scholar
  60. 60.
    Lacks DJ, Osborne MJ (2004) Phys Rev Lett 93:255501CrossRefGoogle Scholar
  61. 61.
    Turnbull D (1949) J Appl Phys 71:17Google Scholar
  62. 62.
    Guan PE, Chen MW, Egami T (2010) Phys Rev Lett 104:205701CrossRefGoogle Scholar
  63. 63.
    Zhang J, Zhang HF, Quan MX, Hu ZQ (2004) Mater Lett 58:1379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Institut für Komplexe Materialien, IFW DresdenDresdenGermany
  3. 3.Institut für Werkstoffwissenschaft, TU DresdenDresdenGermany
  4. 4.School of Materials Science and EngineeringTaiyuan University of Science and TechnologyTaiyuanPeople’s Republic of China
  5. 5.Institute for Complex Materials, IFW DresdenDresdenGermany

Personalised recommendations