Journal of Materials Science

, Volume 48, Issue 19, pp 6818–6824 | Cite as

Density and viscosity of ternary Cr–Fe–Ni liquid alloys

  • Hidekazu Kobatake
  • Jürgen Brillo


The density and viscosity of ternary Cr–Fe–Ni liquid alloys have been investigated over a wide temperature range. The density was measured using electromagnetic levitation as a container-less technique, while viscosity was measured by means of a high-temperature oscillating cup viscometer. Although, the concentration dependence of density shows the influence of the second order (binary) interaction parameter in excess volume, the influence of a third order (ternary) interaction parameter in excess volume can be neglected. The temperature dependences of the viscosities are well described by the Arrhenius law. The viscosity increases monotonically as Fe or Cr concentration increases. For constant temperature, the viscosity as a function of iron molar faction can be described by a thermodynamic model using the enthalpy of mixing as input parameter.


Molar Volume Liquidus Temperature Excess Volume Binary Interaction Parameter Electromagnetic Levitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to Professor Dr. Dieter Herlach for a critical review of this study and his valuable suggestions. One of the authors (H. K.) is grateful to the German Academic Exchange Service DAAD for financial support (A/11/94004).


  1. 1.
    Wakamatsu T, Ozawa S, Fukuyama H, Kobatake H, Watanabe M, Mizuno A, Hibiya T, (2008) Proceedings 29th Japan Symposium on Thermophysical Properties, Japan Society of Thermophysical Properties, Tokyo, p 179Google Scholar
  2. 2.
    Hirai M (1993) Iron Steel Inst Jpn Int 33:251CrossRefGoogle Scholar
  3. 3.
    Kapty G (2003) Proceedings of MicroCad 2003, International Conference, Section, Metallurgy, University of Miskolc, Hungary, p 23Google Scholar
  4. 4.
    Sharan A, Nagasaka T, Cramb AW (1994) Met Mater Trans B 25:939CrossRefGoogle Scholar
  5. 5.
    Brillo J, Egry I (2004) Z Metallkd 95:6911Google Scholar
  6. 6.
    Tsu Y, Takano K, Watanabe S, Shiraishi Y (1978) Tohoku Daigaku Senko Seiren Kenkyusho Iho 34:131Google Scholar
  7. 7.
    Kobatake H, Brillo J (2012) J Mater Sci. doi: 10.1007/s10853-013-7274-0
  8. 8.
    Sato Y, Sugisawa K, Aoki D, Yamamura T (2005) Meas Sci Technol 16:363CrossRefGoogle Scholar
  9. 9.
    Kehr M, Hoyer W, Egry I (2007) Int J Thermophys 28:1017CrossRefGoogle Scholar
  10. 10.
    Schick M, Brillo J, Egry I, Hallstedt B (2012) J Mater Sci 47:8145. doi: 10.1007/s10853-012-6710-x CrossRefGoogle Scholar
  11. 11.
    Brillo J, Egry I (2004) Z Metallkd 95:6911Google Scholar
  12. 12.
    Brillo J, Egry I (2003) Int J Thermophys 24:1155CrossRefGoogle Scholar
  13. 13.
    Vegard L (1921) Z. Phys 5:17CrossRefGoogle Scholar
  14. 14.
    Adachi M, Schick M, Brillo J, Egry I, Watanabe M (2010) J Mater Sci 45:2002. doi: 10.1007/s10853-009-4149-5 CrossRefGoogle Scholar
  15. 15.
    Krishnan S, Hansen GP, Hauge RH, Margrave JL (1990) High Temp Sci 29:17Google Scholar
  16. 16.
    Krishnan S, Yugawa K, Nordine PC (1997) Phys Rev B 55:8201CrossRefGoogle Scholar
  17. 17.
    Kobatake H, Khosroabadi H, Fukuyama H (2012) Met Mat Trans A 43:2466CrossRefGoogle Scholar
  18. 18.
    Hillert M, Qiu C (1990) Met Mat Trans A 21:1673CrossRefGoogle Scholar
  19. 19.
    Brillo J, Egry I, Ho I (2006) Int J Thermophys 27:494CrossRefGoogle Scholar
  20. 20.
    Ferris D, Quested PN (2002) NPL Report (A) 306Google Scholar
  21. 21.
    Roscoe R (1958) Proc Phys Soc 72:576CrossRefGoogle Scholar
  22. 22.
    Kinzoku data book 4th edn (2004) The Japan Institute of metals, Maruzen, Tokyo, p 223Google Scholar
  23. 23.
    Brillo J, Egry I, Matsushita T (2006) Int J Thermophys 27:1778CrossRefGoogle Scholar
  24. 24.
    Schick M, Brillo J, Egry I (2009) Int J Cast Met Res 22:82CrossRefGoogle Scholar
  25. 25.
    Kozlow LY, Romanov LM, Petrov NN, Vuzov Izv (1983) Chernaya Metall 3:7Google Scholar
  26. 26.
    Brools RF, Dinsdale AT, Quested PN (2005) Meas Sci Technol 16:354CrossRefGoogle Scholar
  27. 27.
    Miettinen J (1999) Calphad 23:231CrossRefGoogle Scholar
  28. 28.
    Kehr M, Schick M, Hoyer W, Egry I (2008) High Temp High Press 37:361Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und RaumfahrtCologneGermany

Personalised recommendations