Journal of Materials Science

, Volume 49, Issue 10, pp 3592–3597 | Cite as

Catalyst-free synthesis of silicon nanowires by oxidation and reduction process

  • Sanjay K. Behura
  • Qiaoqin Yang
  • Akira Hirose
  • Omkar Jani
  • Indrajit Mukhopadhyay
Article

Abstract

A new process has been developed to grow silicon (Si) nanowires (NWs), and their growth mechanisms were explored and discussed. In this process, SiNWs were synthesized by simply oxidizing and then reducing Si wafers in a high temperature furnace. The process involves H2, in an inert atmosphere, reacts with thermally grown SiO2 on Si at 1100 °C enhancing the growth of SiNWs directly on Si wafers. High-resolution transmission electron microscopy studies show that the NWs consists of a crystalline core of ~25 nm in diameter and an amorphous oxide shell of ~2 nm in thickness, which was also supported by selected area electron diffraction patterns. The NWs synthesized exhibit a high aspect ratio of ~167 and room temperature phonon confinement effect. This simple and economical process to synthesize crystalline SiNWs opens up a new way for large scale applications.

Notes

Acknowledgements

This work was supported by Foreign Affairs and International Trade Canada (DFAIT) under Commonwealth Graduate Student Exchange Program Scholarship (2011–2012). Q.Y. and A.H. acknowledge the support from NSERC and Canada Research Chair Program. S.K.B. and Q.Y. acknowledge the technical assistance from Dave McColl, Plasma Physics Laboratory, Rob Peace, Department of Mechanical Engineering and Jason Maley, SSSC, University of Saskatchewan, Canada. S.K.B. and O.J. acknowledges Prof. T. Harinarayana, Director, GERMI Research, Innovation and Incubation Centre, India. The EM research described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies.

References

  1. 1.
    Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) Nano Lett 3:149CrossRefGoogle Scholar
  2. 2.
    He R, Yang P (2006) Nature Nanotechnol 1:42CrossRefGoogle Scholar
  3. 3.
    Chan CK, Peng H, Liu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nature Nanotechnol 3:31035CrossRefGoogle Scholar
  4. 4.
    Granett E, Yang P (2010) Nano Lett 10:1082CrossRefGoogle Scholar
  5. 5.
    Pignalosa P, Lee H, Qiao L, Tseng M, Yi AY (2011) AIP Advances 1:032124CrossRefGoogle Scholar
  6. 6.
    Kalita G, Adhikari S, Aryal HR, Afre R, Soga T, Sharon M, Koichi W, Umeno M (2009) J Phys D 42:115104CrossRefGoogle Scholar
  7. 7.
    Schmidt V, Wittemann JV, Senz S, Gosele U (2009) Adv Mater 21:2681CrossRefGoogle Scholar
  8. 8.
    Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Lett 4:433CrossRefGoogle Scholar
  9. 9.
    Ferry DK (2008) Science 319:579CrossRefGoogle Scholar
  10. 10.
    Colli A, Hofmann S, Fasoli A, Ferrari AC, Ducati C, Dunin-Borokowski RE, Robertson J (2006) Appl Phys A 85:247CrossRefGoogle Scholar
  11. 11.
    Kim BS, Koo TW, Lee JH, Kim DS, Jung YC, Hwang SW, Choi BL, Lee EK, Kim JM, Whang D (2009) Nano Lett 9:864CrossRefGoogle Scholar
  12. 12.
    Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58:R16024CrossRefGoogle Scholar
  13. 13.
    Pan ZW, Dai ZR, Xu L, Lee ST, Wang ZL (2001) J Phys Chem B 105:2507CrossRefGoogle Scholar
  14. 14.
    Garnett EC, Liang W, Yang P (2007) Adv Mater 19:2946CrossRefGoogle Scholar
  15. 15.
    Schmidt V, Wittemann JV, Gosele U (2010) Chem Rev 110:361CrossRefGoogle Scholar
  16. 16.
    Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471CrossRefGoogle Scholar
  17. 17.
    Schubert L, Werner P, Zakharov ND, Gerth G, Kolb FM, Long L, Gosel U, Tan TY (2004) Appl Phys Lett 84:4968CrossRefGoogle Scholar
  18. 18.
    Morales AM, Lieber CM (1998) Science 279:208CrossRefGoogle Scholar
  19. 19.
    Niu J, Sha J, Yang D (2004) Physica E 23:131CrossRefGoogle Scholar
  20. 20.
    Yang HJ, Yuan FW, Tuan HY (2010) Chem Commun 46:6105CrossRefGoogle Scholar
  21. 21.
    Zhang RQ, Lifshitz Y, Lee ST (2003) Adv Mater 15:635CrossRefGoogle Scholar
  22. 22.
    Wang N, Tang YH, Zhang YF, Yu DP, Lee CS, Bello I, Lee ST (1998) Chem Phys Lett 283:368CrossRefGoogle Scholar
  23. 23.
    Wang N, Tang YH, Zhang YF, Lee CS, Bello I, Lee ST (1999) Chem Phys Lett 299:237CrossRefGoogle Scholar
  24. 24.
    Menga F, Li J, Hong Z, Zhia M, Sakla A, Xianga C, Wua N (2013) Catal Today 199:48CrossRefGoogle Scholar
  25. 25.
    Lu J, Zeng X, Liu H, Zhang W, Zhang Y (2012) J Phys Chem C 116:23013CrossRefGoogle Scholar
  26. 26.
    Dhar S, Giri PK (2011) Int J Nanosci 10:13CrossRefGoogle Scholar
  27. 27.
    Piscanec S, Ferrari AC, Cantoro M, Hofmann S, Zapien JA, Lifshitz Y, Lee ST, Robertson J (2003) J Mater Sci Eng C 23:931CrossRefGoogle Scholar
  28. 28.
    Compaan A, Lee MC, Trott G (1985) Phys Rev B 32:6731CrossRefGoogle Scholar
  29. 29.
    Jellison GE, Modine FA (1983) Phys Rev B 27:7446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sanjay K. Behura
    • 1
    • 2
  • Qiaoqin Yang
    • 1
  • Akira Hirose
    • 3
  • Omkar Jani
    • 2
  • Indrajit Mukhopadhyay
    • 4
  1. 1.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Solar Energy Research WingGujarat Energy Research and Management Institute-Research, Innovation and Incubation CentreGandhinagarIndia
  3. 3.Plasma Physics Laboratory, Department of Physics and Engineering PhysicsUniversity of SaskatchewanSaskatoonCanada
  4. 4.School of Solar EnergyPandit Deendayal Petroleum UniversityGandhinagarIndia

Personalised recommendations