Advertisement

Journal of Materials Science

, Volume 48, Issue 17, pp 6074–6082 | Cite as

First-principles investigations of structural, elastic, electronic and magnetic properties of Ga1−x Mn x P and In1−x Mn x P

  • A. Djedid
  • B. Doumi
  • S. Méçabih
  • B. Abbar
Article

Abstract

We employ the full-potential linearized augmented plane wave plus local orbital (FP L/APW + lo) method based on the density functional theory (DFT) in order to investigate the structural, elastic, electronic, and magnetic properties of ordered dilute ferromagnetic semiconductors Ga1−x Mn x P and In1−x Mn x P at (x = 0.25) in the zinc blende phase, using generalized gradient approximation, GGA (PBE). To our knowledge the elastic constants of these compounds have not yet been measured or calculated, hence our results serve as a first quantitative theoretical prediction for future study. Results of calculated electronic structures and magnetic properties reveal that both Ga0.75Mn0.25P and In0.75Mn0.25P have stable ferromagnetic ground state, and they are ideal half-metallic (HM) ferromagnetic at their equilibrium lattice constants. Also we show the nature of the bonding from the charge spin-densities calculations. The calculated total magnetic moments are 4.0 μB per unit cell for both Ga0.75Mn0.25P and In0.75Mn0.25P, which agree with the Slater–Pauling rule quite well, and we observe that p–d hybridization reduces the local magnetic moment of Mn from its free space charge value and produces smaller local magnetic moments on the nonmagnetic Ga, In and P sites. The values of N 0α and N 0β exchange constants confirm the magnetic nature of these compounds. From the robust half-metallicity of Ga0.75Mn0.25P and In0.75Mn0.25P as a function of lattice constant is also investigated.

Keywords

Generalize Gradient Approximation Dilute Magnetic Semiconductor Exchange Constant Total Magnetic Moment Local Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Liu C, Yun F, Morkoç H (2005) J Mater Sci: Mater Electron 16:555CrossRefGoogle Scholar
  2. 2.
    Prinz GA (1999) J Magn Magn Mater 200:57CrossRefGoogle Scholar
  3. 3.
    Tarhan E, Miotkowski I, Rodriguez S, Ramdas AK (2003) Phys Rev B 67:195202CrossRefGoogle Scholar
  4. 4.
    Katayama-Yoshida H, Sato K (2003) Phys B 327:337CrossRefGoogle Scholar
  5. 5.
    Mahadevan P, Zunger A (2004) Appl Phys Lett 85:2860CrossRefGoogle Scholar
  6. 6.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AV, Treger DM (2001) Science 294:1488CrossRefGoogle Scholar
  7. 7.
    Theodoropoulou N, Hebard AF, Overberg ME, Abernathy CR, Pearton SJ, Chu SNG, Wilson RG (2002) Phys Rev Lett 89:107203CrossRefGoogle Scholar
  8. 8.
    Overberg ME, Gila BP, Thaler GT, Abernathy CR, Pearton SJ, Theodoropoulou NA, McCarthy KT, Arnason SB, Hebard AF, Chu SNG, Wilson RG, Zavada JM, Park YD (2002) J Vac Sci Technol B 20:969CrossRefGoogle Scholar
  9. 9.
    Singh VA, Zunger A (1985) Phys Rev B 31:3729CrossRefGoogle Scholar
  10. 10.
    Burch KS, Awschalom DD, Basov DN (2008) J Magn Magn Mater 320:3207CrossRefGoogle Scholar
  11. 11.
    Ahmad I, Amin B (2013) Comput Mater Sci 68:55CrossRefGoogle Scholar
  12. 12.
    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019CrossRefGoogle Scholar
  13. 13.
    Owens FJ (2005) J Phys Chem Solids 66:793CrossRefGoogle Scholar
  14. 14.
    Korona KP, Wysmolek A, Kamińska M, Twardowski A, Piersa M, Palczewska M, Strzelecka G, Hruban A, Kuhl J, Adomavicius R, Krotkus A (2006) Phys B 382:220CrossRefGoogle Scholar
  15. 15.
    Schmidt TM, Venezuela P, Arantes JT, Fazzio A (2006) Phys Rev B 73:235330CrossRefGoogle Scholar
  16. 16.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864CrossRefGoogle Scholar
  17. 17.
    Kohn W, Sham LJ (1965) J Phys Rev A 140:1133CrossRefGoogle Scholar
  18. 18.
    Blaha P, Schwartz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave and local orbitals program for calculating crystal properties. TU Wien, ViennaGoogle Scholar
  19. 19.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  20. 20.
    Murnaghan FD (1944) Proc Natl Acad Sci USA 30(9):244CrossRefGoogle Scholar
  21. 21.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  22. 22.
    Pack JD, Monkhorst HJ (1977) Phys Rev B 16:1748CrossRefGoogle Scholar
  23. 23.
    Bouhemadou A, Khenata R, Kharoubi M, Seddik T, Reshak AH, Al-Douri Y (2009) Comput Mater Sci 45:474CrossRefGoogle Scholar
  24. 24.
    Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) J Chem Phys 123:174101CrossRefGoogle Scholar
  25. 25.
    Wang SQ, Ye HQ (2002) Phys Rev B 66:235111CrossRefGoogle Scholar
  26. 26.
    Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Kanoun MB, Merad AE, Cibert J, Aourag H, Merad G (2004) J Alloys Compd 86:366Google Scholar
  28. 28.
    Merad AE, Aourag H, Khalifa B, Mathieu C, Merad G (2001) Superlattices Microstruct 30:241CrossRefGoogle Scholar
  29. 29.
    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815CrossRefGoogle Scholar
  30. 30.
    Herrera-Cabrera MJ, Rodríguez-Hernández P, Munoz A (2001) Phys Status Solidi (b) 223:411CrossRefGoogle Scholar
  31. 31.
    Yogurtçu YK, Miller AJ, Saunders GA (1981) J Phys Chem Solids 42:49CrossRefGoogle Scholar
  32. 32.
    Nichols DN, Rimai DS, Sladek RJ (1980) Solid State Commun 36:667CrossRefGoogle Scholar
  33. 33.
    Morozzi VL, Janak JF, Williams AR (1978) Calculated electronic properties of metals. Pergamon, New YorkGoogle Scholar
  34. 34.
    Sanvito S, Ordejon P, Hill NA (2001) Phys Rev B 63:165206CrossRefGoogle Scholar
  35. 35.
    Wu Z, Cohen RE (2006) Phys Rev B 73:235116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel-AbbesAlgeria

Personalised recommendations