Journal of Materials Science

, Volume 48, Issue 17, pp 6018–6024 | Cite as

Thermoelectric properties of chromium disilicide prepared by mechanical alloying

  • S. Perumal
  • S. Gorsse
  • U. Ail
  • M. Prakasam
  • B. Chevalier
  • A. M. Umarji


CrSi and Cr1−x Fe x Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples were characterized by powder X-ray diffraction, scanning, and transmission electron microscopy and electron microprobe analysis. The final crystallite size of CrSi2 obtained from the XRD patterns is about 40 and 80 nm for SS- and WC-milled powders, respectively, whereas the size of the second phase inclusions in the hot pressed samples is about 1–5 μm. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, and figure of merit (ZT) were analyzed in the temperature range from 300 to 800 K. While the ball-milling process results in a lower electrical resistivity and thermal conductivity due to the presence of the inclusions and the refinement of the matrix microstructure, respectively, the Seebeck coefficient is negatively affected by the formation of the inclusions which leads to a modest improvement of ZT.


Electrical Resistivity Mechanical Alloy Thermoelectric Property PbTe Seebeck Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by a research grant from the Indo-French Centre for the Promotion of Advanced Research, IFCPAR/CEFIPRA (Program No. 4008-2).


  1. 1.
    Filonov AB, Tralle IE, Dorozhkin NN, Migas DB, Shaposhnikov VL, Petrov GV, Anishchik VM, Borisenko VE (1994) Phys Stat Sol B 186:209CrossRefGoogle Scholar
  2. 2.
    Mattheiss LF (1991) Phys Rev B 43:1863CrossRefGoogle Scholar
  3. 3.
    Shinoda D, Asanabe S, Sasaki Y (1964) J Phys Soc Jpn 19(3):269CrossRefGoogle Scholar
  4. 4.
    Nishida I (1972) J Mater Sci 7:1119. doi: 10.1007/BF00550193 CrossRefGoogle Scholar
  5. 5.
    Fedorov MI (2009) J Thermoelectr 2:51Google Scholar
  6. 6.
    Dasgupta T, Umarji AM (2008) J Alloys Compd 461:292CrossRefGoogle Scholar
  7. 7.
    Dasgupta T, Etourneau J, Chevalier B, Matar SF, Umarji AM (2008) J Appl Phys 103:113516CrossRefGoogle Scholar
  8. 8.
    Ma J, Gu Y, Shi L, Chen L, Yang Z, Oian Y (2004) J Alloys Compd 376:176CrossRefGoogle Scholar
  9. 9.
    Nishida I, Sakata T (1978) J Phys Chem Solids 39:499CrossRefGoogle Scholar
  10. 10.
    Perumal S, Gorsse S, Ail U, Decourt R, Umarji AM (2013) J Electron Mater. doi: 10.1007/s11664-013-2510-6 Google Scholar
  11. 11.
    Perumal S, Gorsse S, Ail U, Chevalier B, Decourt R, Umarji AM (2013) J Mater Sci 48:227. doi: 10.1007/s10853-012-6732-4 CrossRefGoogle Scholar
  12. 12.
    Pan ZJ, Zhang LT, Wu JS (2007) Scripta Mater 56:245CrossRefGoogle Scholar
  13. 13.
    Pan ZJ, Zhang LT, Wu JS (2007) Scripta Mater 56:257CrossRefGoogle Scholar
  14. 14.
    Gorsse S, Pereira PB, Decourt R, Sellier E (2010) Chem Mater 22:988CrossRefGoogle Scholar
  15. 15.
    Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Acta Mater 59:7425CrossRefGoogle Scholar
  16. 16.
    Gorsse S, Chevalier B, Orveillon G (2008) Appl Phys Lett 92:122501CrossRefGoogle Scholar
  17. 17.
    Luo W, Li H, Yan Y, Lin Z, Tang X, Zhang Q, Uher C (2011) Intermetal 19:404CrossRefGoogle Scholar
  18. 18.
    Ibanez M, Zamani R, Lalonde A, Cadavid D, Li W, Shavel A, Arbiol J, Ramon MJ, Gorsse S, Snyder GJ, Cabot A (2012) J Am Chem Soc 134:4060CrossRefGoogle Scholar
  19. 19.
    Ibanez M, Cadavid D, Anselmi-Tamburini U, Zamani R, Gorsse S, Li W, Lopez AM, Ramon MJ, Arbiol J, Cabot A (2013) J Mater Chem A 1:1421. doi: 10.1039/c2ta00419d CrossRefGoogle Scholar
  20. 20.
    Cadavid D, Ibanez M, Gorsse S, Lopez AM, Cirera A, Ramon MJ, Arbiol J, Cabot A (2012) J Nanopart Res 14:1328. doi: 10.1007/c11051-012-1328-0 CrossRefGoogle Scholar
  21. 21.
    Ibanez M, Zamani R, Li W, Cadavid D, Gorsse S, Katcho NA, Shavel A, Lopez AM, Ramon MJ, Arbiol J, Cabot A (2012) Chem Mater 24:4615. doi: 10.1021/cm303252q CrossRefGoogle Scholar
  22. 22.
    Poudel B, Qing Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) Science 320:634CrossRefGoogle Scholar
  23. 23.
    Zhang DL (1996) J Mater Sci 31:895. doi: 10.1007/BF00352887 CrossRefGoogle Scholar
  24. 24.
    Fernandes BB, Rodrigues G, Coelho GC, Ramos AS (2005) J Mater Sci Eng A 405:135CrossRefGoogle Scholar
  25. 25.
    Maxwell JC (1904) A treatise on electricity and magnetism. Clarendon, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Perumal
    • 1
  • S. Gorsse
    • 2
  • U. Ail
    • 2
  • M. Prakasam
    • 2
  • B. Chevalier
    • 2
  • A. M. Umarji
    • 1
  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  2. 2.CNRS, ICMCBUniversity of BordeauxPessac CedexFrance

Personalised recommendations