Journal of Materials Science

, Volume 48, Issue 17, pp 5990–6000 | Cite as

Simultaneous synthesis of modified Binol-periodic mesoporous organosilica SBA-15 type material. Application as catalysts in asymmetric sulfoxidation reactions

Article

Abstract

The synthesis of a chiral periodic mesoporous organosilica (chiral PMO) SBA-15 type, using a bis-silylated Binol precursor, has been studied through two different heterogenization routes. On the one hand, the immobilization of a (R)-(+)-1,1′-bi-2-naphthol (Binol) derivative was accomplished by following a standard multistep synthesis methodology. On the other hand, a new route consisting of an easy one-step synthesis was developed achieving a simultaneous formation of mesoporous structure and Binol chiral ligand immobilization in the walls. The addition of KCl “salting out” electrolytes favored the micellization, obtaining the well-ordered chiral PMO materials. The thioanisole asymmetric oxidation reaction was used to validate the enantio-catalysts activity. The materials synthesized by the multistep method reached yield and enantiomeric excess of 41 and 15 %, respectively, while the synthesized one-pot chiral PMO materials achieved up to 58 and 42 %, respectively. This difference could be attributed to a more homogenous distribution of the chiral moiety as well as the simultaneous micellization and formation of the siliceous mesostructure, in the one-pot procedure. This promotes higher reagents accessibility to the active center, and therefore an enhancement of the chiral induction. Thereby, materials with Binol ligand incorporated into the three-dimensional silica framework were successfully accomplished.

Notes

Acknowledgements

The financial support of the Spanish government (CTQ2008-05909/PPQ and CTQ2011-22707) is gratefully acknowledged.

References

  1. 1.
    Kagan HB, Dang T-P (1972) J Am Chem Soc 94:6429CrossRefGoogle Scholar
  2. 2.
    Bein T (1999) Curr Opin Solid State Mater Sci 4:85CrossRefGoogle Scholar
  3. 3.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  4. 4.
    García RA, van Grieken R, Iglesias J, Morales V, Gordillo D (2008) Chem Mater 20:2964CrossRefGoogle Scholar
  5. 5.
    Prasetyanto EA, Khan NH, Seo H-U, Park S-E (2010) Top Catal 53:1381CrossRefGoogle Scholar
  6. 6.
    Prasetyanto EA, Jeong S-M, Park S-E (2010) Top Catal 53:192CrossRefGoogle Scholar
  7. 7.
    De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Chem Rev 102:3615CrossRefGoogle Scholar
  8. 8.
    Martín-Aranda R, Cèjka J (2010) Top Catal 53:414CrossRefGoogle Scholar
  9. 9.
    Anwander R (2001) Chem Mater 13:4419CrossRefGoogle Scholar
  10. 10.
    Thomas JM, Maschmeyer T, Jonhson BFG, Shepard DS (1999) J Mol Catal A Chem 141:39CrossRefGoogle Scholar
  11. 11.
    Song CE, Lee SG (2001) Chem Rev 102:3495CrossRefGoogle Scholar
  12. 12.
    García H, Corma A, Baleizáo-Gigante B, Das D, Alvaro M (2003) Chem Commun 15:1860Google Scholar
  13. 13.
    Corma A, Fuentes A, Iglesias M, Morales E, Sánchez F (2006) J Mol Catal A 109:246Google Scholar
  14. 14.
    Inagaki S, Guan S, Fukushima Y, Ohsuma T, Terasaki O (1999) J Am Chem Soc 121:9611CrossRefGoogle Scholar
  15. 15.
    Melde BT, Holland CF, Blandford A (1999) Chem Mater 11:3302CrossRefGoogle Scholar
  16. 16.
    Yoshiina-Ishii C, Asefa T, Coombs N, Maclachlan MJ, Ozin GA (1999) Chem Commun 24:2539CrossRefGoogle Scholar
  17. 17.
    Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) Nature 416:304CrossRefGoogle Scholar
  18. 18.
    Xia H-S, Zhou C-H, Tong DS, Lin CX (2010) J Porous Mater 17:225CrossRefGoogle Scholar
  19. 19.
    Zhu G, Zhong H, Yang Q, Li C (2008) Microporous Mesoporous Mater 116:36CrossRefGoogle Scholar
  20. 20.
    Inagaki S, Guan S, Yang Q, Kapoor MP, Shimada T (2008) Chem Commun 14:202Google Scholar
  21. 21.
    Xiao L, Peiyuan W, Yang, Yan Y (2010) Chem-Asian J 5:1232Google Scholar
  22. 22.
    Wang P, Yang J, Liu J, Zhang L, Yang Q (2009) Microporous Mesoporous Mater 117:91CrossRefGoogle Scholar
  23. 23.
    Mizoshita N, Tani T, Inagaki S (2011) Chem Soc Rev 40:789CrossRefGoogle Scholar
  24. 24.
    Ide A, Voss R, Scholz G, Ozin GA, Antonietti M, Thomas A (2007) Chem Mater 19:2649CrossRefGoogle Scholar
  25. 25.
    Meng X, Yokoi T, Lu D, Tatsumi T (2007) Angew Chem Int Ed 46:7796CrossRefGoogle Scholar
  26. 26.
    Polarz S, Kuschel A (2006) Adv Mater 18:1206CrossRefGoogle Scholar
  27. 27.
    Morell J, Chatterjee S, Klar PJ, Mauder D, Shenderovich I, Hoffmann F, Fröba M (2008) Chem Eur J 14:5935CrossRefGoogle Scholar
  28. 28.
    MacQuarrie S, Thompson MP, Blanc A, Mosey NJ, Lemieux RP, Cathleen CM (2008) J Am Chem Soc 130:14099CrossRefGoogle Scholar
  29. 29.
    Wang TY, Shi JY, Ma BC, Wang W (2010) J Mater Chem 20:6026CrossRefGoogle Scholar
  30. 30.
    Shi JY, Wang CA, Li ZJ, Wang Q, Zhang Y, Wang W (2011) Chem Eur J 17:6206CrossRefGoogle Scholar
  31. 31.
    Liu X, Wang P, Zhang L, Yang J, Li C, Yang Q (2010) Chem Eur J 16:12721Google Scholar
  32. 32.
    Kuschel A, Polarz S (2010) J Am Chem Soc 132:6558CrossRefGoogle Scholar
  33. 33.
    García RA, van Grieken R, Iglesias J, Morales V, Villajos N (2010) J Catal 274:221CrossRefGoogle Scholar
  34. 34.
    Brunel JM (2005) Chem Rev 105:857CrossRefGoogle Scholar
  35. 35.
    Chen Y, Yekta S, Yudin AK (2003) Chem Rev 103:3155CrossRefGoogle Scholar
  36. 36.
    Heumamm LV, Keck GE (2007) Org Lett 9:4275CrossRefGoogle Scholar
  37. 37.
    Pescitelli G, Bari L, Salvadori P (2006) J Organomet Chem 10:2311CrossRefGoogle Scholar
  38. 38.
    Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2009) J Catal 262:111CrossRefGoogle Scholar
  39. 39.
    Yuan X-Y, Li H-Y, Hodge P, Kilner M, Tastard CY, Zhang Z-P (2006) Tetrahedron 17:240CrossRefGoogle Scholar
  40. 40.
    Pathak K, Ahmad I, Abdi SHR, Kureshy RI, Khan NH, Jasra RV (2006) J Mol Catal A 244:110CrossRefGoogle Scholar
  41. 41.
    Hesemann P, Moreau J (2003) CR Chim 6:199CrossRefGoogle Scholar
  42. 42.
    Pathak K, Bhatt AP, Abdi S, Kuershy RI, Khan NH, Ahmad I, Jasra RV (2006) Tetrahedron 17:1506CrossRefGoogle Scholar
  43. 43.
    Wang P, Liu X, Yang J, Yang Y, Zhang L, Yang Q, Li C (2009) J Mater Chem 19:8009CrossRefGoogle Scholar
  44. 44.
    Zhai S-R, Kim I, Ha C-S (2008) J Solid State Chem 181:67CrossRefGoogle Scholar
  45. 45.
    García R, Morales V, Garcés T (2012) J Mater Chem 22:2607CrossRefGoogle Scholar
  46. 46.
    Xu S, Pu H, Wang H, Han C, Dongquan D, Zhang Y, Luo Y (2012) J Phys Chem Solids 73:1252CrossRefGoogle Scholar
  47. 47.
    Katsuki T (2001) Asymmetric oxidation reactions: practical approach in chemistry. Oxford University Press, New YorkGoogle Scholar
  48. 48.
    Kagan HB (2008) Transition metals for organic synthesis: building blocks and fine chemicals, chap 2.14. Wiley-VCH Verlag GmbH & Co, WeinheimGoogle Scholar
  49. 49.
    Shi H, Yu C, He J (2010) J Phys Chem 114:17189Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Technology, ESCETUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations