Advertisement

Journal of Materials Science

, Volume 48, Issue 17, pp 5990–6000 | Cite as

Simultaneous synthesis of modified Binol-periodic mesoporous organosilica SBA-15 type material. Application as catalysts in asymmetric sulfoxidation reactions

  • V. Morales
  • J. A. Villajos
  • R. A. García
Article

Abstract

The synthesis of a chiral periodic mesoporous organosilica (chiral PMO) SBA-15 type, using a bis-silylated Binol precursor, has been studied through two different heterogenization routes. On the one hand, the immobilization of a (R)-(+)-1,1′-bi-2-naphthol (Binol) derivative was accomplished by following a standard multistep synthesis methodology. On the other hand, a new route consisting of an easy one-step synthesis was developed achieving a simultaneous formation of mesoporous structure and Binol chiral ligand immobilization in the walls. The addition of KCl “salting out” electrolytes favored the micellization, obtaining the well-ordered chiral PMO materials. The thioanisole asymmetric oxidation reaction was used to validate the enantio-catalysts activity. The materials synthesized by the multistep method reached yield and enantiomeric excess of 41 and 15 %, respectively, while the synthesized one-pot chiral PMO materials achieved up to 58 and 42 %, respectively. This difference could be attributed to a more homogenous distribution of the chiral moiety as well as the simultaneous micellization and formation of the siliceous mesostructure, in the one-pot procedure. This promotes higher reagents accessibility to the active center, and therefore an enhancement of the chiral induction. Thereby, materials with Binol ligand incorporated into the three-dimensional silica framework were successfully accomplished.

Keywords

Multistep Method Chiral Ligand Binol Thioanisole Asymmetric Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the Spanish government (CTQ2008-05909/PPQ and CTQ2011-22707) is gratefully acknowledged.

References

  1. 1.
    Kagan HB, Dang T-P (1972) J Am Chem Soc 94:6429CrossRefGoogle Scholar
  2. 2.
    Bein T (1999) Curr Opin Solid State Mater Sci 4:85CrossRefGoogle Scholar
  3. 3.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  4. 4.
    García RA, van Grieken R, Iglesias J, Morales V, Gordillo D (2008) Chem Mater 20:2964CrossRefGoogle Scholar
  5. 5.
    Prasetyanto EA, Khan NH, Seo H-U, Park S-E (2010) Top Catal 53:1381CrossRefGoogle Scholar
  6. 6.
    Prasetyanto EA, Jeong S-M, Park S-E (2010) Top Catal 53:192CrossRefGoogle Scholar
  7. 7.
    De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Chem Rev 102:3615CrossRefGoogle Scholar
  8. 8.
    Martín-Aranda R, Cèjka J (2010) Top Catal 53:414CrossRefGoogle Scholar
  9. 9.
    Anwander R (2001) Chem Mater 13:4419CrossRefGoogle Scholar
  10. 10.
    Thomas JM, Maschmeyer T, Jonhson BFG, Shepard DS (1999) J Mol Catal A Chem 141:39CrossRefGoogle Scholar
  11. 11.
    Song CE, Lee SG (2001) Chem Rev 102:3495CrossRefGoogle Scholar
  12. 12.
    García H, Corma A, Baleizáo-Gigante B, Das D, Alvaro M (2003) Chem Commun 15:1860Google Scholar
  13. 13.
    Corma A, Fuentes A, Iglesias M, Morales E, Sánchez F (2006) J Mol Catal A 109:246Google Scholar
  14. 14.
    Inagaki S, Guan S, Fukushima Y, Ohsuma T, Terasaki O (1999) J Am Chem Soc 121:9611CrossRefGoogle Scholar
  15. 15.
    Melde BT, Holland CF, Blandford A (1999) Chem Mater 11:3302CrossRefGoogle Scholar
  16. 16.
    Yoshiina-Ishii C, Asefa T, Coombs N, Maclachlan MJ, Ozin GA (1999) Chem Commun 24:2539CrossRefGoogle Scholar
  17. 17.
    Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) Nature 416:304CrossRefGoogle Scholar
  18. 18.
    Xia H-S, Zhou C-H, Tong DS, Lin CX (2010) J Porous Mater 17:225CrossRefGoogle Scholar
  19. 19.
    Zhu G, Zhong H, Yang Q, Li C (2008) Microporous Mesoporous Mater 116:36CrossRefGoogle Scholar
  20. 20.
    Inagaki S, Guan S, Yang Q, Kapoor MP, Shimada T (2008) Chem Commun 14:202Google Scholar
  21. 21.
    Xiao L, Peiyuan W, Yang, Yan Y (2010) Chem-Asian J 5:1232Google Scholar
  22. 22.
    Wang P, Yang J, Liu J, Zhang L, Yang Q (2009) Microporous Mesoporous Mater 117:91CrossRefGoogle Scholar
  23. 23.
    Mizoshita N, Tani T, Inagaki S (2011) Chem Soc Rev 40:789CrossRefGoogle Scholar
  24. 24.
    Ide A, Voss R, Scholz G, Ozin GA, Antonietti M, Thomas A (2007) Chem Mater 19:2649CrossRefGoogle Scholar
  25. 25.
    Meng X, Yokoi T, Lu D, Tatsumi T (2007) Angew Chem Int Ed 46:7796CrossRefGoogle Scholar
  26. 26.
    Polarz S, Kuschel A (2006) Adv Mater 18:1206CrossRefGoogle Scholar
  27. 27.
    Morell J, Chatterjee S, Klar PJ, Mauder D, Shenderovich I, Hoffmann F, Fröba M (2008) Chem Eur J 14:5935CrossRefGoogle Scholar
  28. 28.
    MacQuarrie S, Thompson MP, Blanc A, Mosey NJ, Lemieux RP, Cathleen CM (2008) J Am Chem Soc 130:14099CrossRefGoogle Scholar
  29. 29.
    Wang TY, Shi JY, Ma BC, Wang W (2010) J Mater Chem 20:6026CrossRefGoogle Scholar
  30. 30.
    Shi JY, Wang CA, Li ZJ, Wang Q, Zhang Y, Wang W (2011) Chem Eur J 17:6206CrossRefGoogle Scholar
  31. 31.
    Liu X, Wang P, Zhang L, Yang J, Li C, Yang Q (2010) Chem Eur J 16:12721Google Scholar
  32. 32.
    Kuschel A, Polarz S (2010) J Am Chem Soc 132:6558CrossRefGoogle Scholar
  33. 33.
    García RA, van Grieken R, Iglesias J, Morales V, Villajos N (2010) J Catal 274:221CrossRefGoogle Scholar
  34. 34.
    Brunel JM (2005) Chem Rev 105:857CrossRefGoogle Scholar
  35. 35.
    Chen Y, Yekta S, Yudin AK (2003) Chem Rev 103:3155CrossRefGoogle Scholar
  36. 36.
    Heumamm LV, Keck GE (2007) Org Lett 9:4275CrossRefGoogle Scholar
  37. 37.
    Pescitelli G, Bari L, Salvadori P (2006) J Organomet Chem 10:2311CrossRefGoogle Scholar
  38. 38.
    Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2009) J Catal 262:111CrossRefGoogle Scholar
  39. 39.
    Yuan X-Y, Li H-Y, Hodge P, Kilner M, Tastard CY, Zhang Z-P (2006) Tetrahedron 17:240CrossRefGoogle Scholar
  40. 40.
    Pathak K, Ahmad I, Abdi SHR, Kureshy RI, Khan NH, Jasra RV (2006) J Mol Catal A 244:110CrossRefGoogle Scholar
  41. 41.
    Hesemann P, Moreau J (2003) CR Chim 6:199CrossRefGoogle Scholar
  42. 42.
    Pathak K, Bhatt AP, Abdi S, Kuershy RI, Khan NH, Ahmad I, Jasra RV (2006) Tetrahedron 17:1506CrossRefGoogle Scholar
  43. 43.
    Wang P, Liu X, Yang J, Yang Y, Zhang L, Yang Q, Li C (2009) J Mater Chem 19:8009CrossRefGoogle Scholar
  44. 44.
    Zhai S-R, Kim I, Ha C-S (2008) J Solid State Chem 181:67CrossRefGoogle Scholar
  45. 45.
    García R, Morales V, Garcés T (2012) J Mater Chem 22:2607CrossRefGoogle Scholar
  46. 46.
    Xu S, Pu H, Wang H, Han C, Dongquan D, Zhang Y, Luo Y (2012) J Phys Chem Solids 73:1252CrossRefGoogle Scholar
  47. 47.
    Katsuki T (2001) Asymmetric oxidation reactions: practical approach in chemistry. Oxford University Press, New YorkGoogle Scholar
  48. 48.
    Kagan HB (2008) Transition metals for organic synthesis: building blocks and fine chemicals, chap 2.14. Wiley-VCH Verlag GmbH & Co, WeinheimGoogle Scholar
  49. 49.
    Shi H, Yu C, He J (2010) J Phys Chem 114:17189Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Technology, ESCETUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations