Journal of Materials Science

, Volume 48, Issue 17, pp 5946–5952 | Cite as

Novel poly(aryl ether) bearing oligoaniline and carbazole pendants: synthesis and properties

  • Danming Chao
  • Shutao Wang
  • Erik B. Berda
  • Maoqiang Chi
  • Ce Wang


A novel poly(aryl ether) bearing oligoaniline and carbazole pendants (PAEOC) was successfully designed and prepared. Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography and X-ray powder diffraction were used to characterize the structure of PAEOC. Its electrochemical properties were investigated using cyclic voltammetry on a CHI 660A Electrochemical Workstation with a conventional three-electrode system. The PAEOC material showed satisfactory electrochromic properties with high contrast value, acceptable switching times, excellent coloration efficiency and admissible stability. Moreover, tunable fluorescence properties have been found by changing the oxidation states of PAEOC.

Graphical Abstract

A novel poly(aryl ether) bearing oligoaniline and carbazole pendants (PAEOC) has been successfully designed and synthesized. This material shows reversible electroactivity, good electrochromic performance and tunable fluorescence properties.


PANI Atom Transfer Radical Polymerization Carbazole DMAc Aryl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported in part by the National Natural Science Foundation of China (Nos. 21104024 and 21274052) and the National 973 Project (No. S2009061009). Erik B. Berda would like to thank the NSF for support through Grant NSF EEC 0832785.


  1. 1.
    MacDiarmid AG (2001) Angew Chem Int Ed 40:2581CrossRefGoogle Scholar
  2. 2.
    Heeger AJ (2001) Rev Mod Phys 73:681CrossRefGoogle Scholar
  3. 3.
    Chiang JC, MacDiarmid (1986) Synth Met 13:193CrossRefGoogle Scholar
  4. 4.
    Virji S, Huang J, Kaner RB, Weiller BH (2004) Nano Lett 4:491CrossRefGoogle Scholar
  5. 5.
    Du HY, Wang J, Yao PJ, Hao YW, Li XG (2013) J Mater Sci 48:3597. doi: 10.1007/s10853-013-7157-4 CrossRefGoogle Scholar
  6. 6.
    Kazim S, Ahmad S, Pfleger J, Plestil J, Joshi YM (2012) J Mater Sci 47:420. doi: 10.1007/s10853-011-5815-y CrossRefGoogle Scholar
  7. 7.
    Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW (1996) Polymer 37:5017CrossRefGoogle Scholar
  8. 8.
    Kuo HM, Hsui TF, Tuo YS, Yuan CL (2012) J Mater Sci 47:2264. doi: 10.1007/s10853-011-6038-y CrossRefGoogle Scholar
  9. 9.
    Konwer S, Guha AK, Dolui Sk (2013) J Mater Sci 48:1729. doi: 10.1007/s10853-012-6931-z CrossRefGoogle Scholar
  10. 10.
    Liu FL, Wudl F, Novak M, Heeger AJ (1986) J Am Chem Soc 108:8311CrossRefGoogle Scholar
  11. 11.
    Wang LX, Soczka-Guth T, Havinga E, Mullen K (1996) Angew Chem Int Ed 35:1495CrossRefGoogle Scholar
  12. 12.
    Kulszewicz-Bajer I, Rozalska I, Kuryłek M (2004) New J Chem 28:669CrossRefGoogle Scholar
  13. 13.
    Wei Y, Yang C, Ding T (1996) Tetrahedron Lett 37:731CrossRefGoogle Scholar
  14. 14.
    Wang H, Han Y (2009) Macromol Rapid Commun 30:521CrossRefGoogle Scholar
  15. 15.
    Huang TC, Lin ST, Yeh LC, Chen CA, Huang HY, Nian ZY, Chen HH, Yeh JM (2012) Polymer 53:4373CrossRefGoogle Scholar
  16. 16.
    Marcasuzaa P, Reynaud S, Grassl B, Preudhomme H, Desbrieres J, Trchova M, Donard OFX (2011) Polymer 52:33CrossRefGoogle Scholar
  17. 17.
    Chen R, Benicewicz BC (2003) Macromolecules 36:6333CrossRefGoogle Scholar
  18. 18.
    Guo B, Finne-Wistrand A, Albertsson AC (2010) Macromolecules 43:4472CrossRefGoogle Scholar
  19. 19.
    Guo B, Finne-Wistrand A, Albertsson AC (2011) J Polym Sci A 49:2097CrossRefGoogle Scholar
  20. 20.
    Guo B, Finne-Wistrand A, Albertsson AC (2011) Macromolecules 44:5227CrossRefGoogle Scholar
  21. 21.
    Chao D, Jia X, Liu H, He L, Cui L, Wang C, Berda EB (2011) J Polym Sci A 49:1605CrossRefGoogle Scholar
  22. 22.
    Sheng K, Bai H, Sun Y, Li C, Shi G (2011) Polymer 52:5567CrossRefGoogle Scholar
  23. 23.
    Hu H, Hechavarria L, Campos J (2003) Solid State Ionics 161:165CrossRefGoogle Scholar
  24. 24.
    Hechavarría L, Hu H, Rincón ME (2003) Thin Solid Films 441:56CrossRefGoogle Scholar
  25. 25.
    DeLongchamp D, Hammond PT (2001) Adv Mater 13:1455CrossRefGoogle Scholar
  26. 26.
    Montazami R, Jain V, Heflin JR (2010) Electrochim Acta 56:990CrossRefGoogle Scholar
  27. 27.
    Tu LL, Jia CY, Weng XL, Deng LJ (2010) Acta Chim Sin 68:2590Google Scholar
  28. 28.
    Chen LX, Weng SH, Zhou JZ, Lin ZH (2010) Chem J Chin Univ 31:790Google Scholar
  29. 29.
    Chao D, Zheng T, Liu H, Yang R, Jia X, Wang S, Berda EB, Wang C (2012) Electrochim Acta 60:253CrossRefGoogle Scholar
  30. 30.
    Jia PT, Argun AA, Xu JW, Xiong SX, Ma J, Hammond PT, Lu XH (2010) Chem Mater 22:6085CrossRefGoogle Scholar
  31. 31.
    Jia X, Chao D, Liu H, He L, Zheng T, Bian X, Wang C (2011) Polym Chem 2:1300CrossRefGoogle Scholar
  32. 32.
    Conwell E, Duke CB, Paton A, Leyadev S (1988) J Chem Phys 88:3955CrossRefGoogle Scholar
  33. 33.
    Furudawa Y, Ueda F, Hyodo Y, Harada I (1988) Macromolecules 21:1297CrossRefGoogle Scholar
  34. 34.
    Johnson GE (1980) J Phys Chem 84:2940CrossRefGoogle Scholar
  35. 35.
    Zhang L, Zhou J, Zhang L (2012) Macromol Chem Phys 213:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Danming Chao
    • 1
  • Shutao Wang
    • 1
  • Erik B. Berda
    • 2
  • Maoqiang Chi
    • 1
  • Ce Wang
    • 1
  1. 1.Alan G. MacDiarmid Institute, College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of Chemistry and Materials Science ProgramUniversity of New HampshireDurhamUSA

Personalised recommendations