Journal of Materials Science

, Volume 48, Issue 16, pp 5653–5663 | Cite as

Soft impingement in diffusion-controlled growth of binary alloys: moving boundary effect in one-dimensional system

  • Massimo TomelliniEmail author


The impact of soft impingement on the kinetics of diffusion-controlled growth of binary alloys is investigated. An analytical approach is developed which takes into account the process of island growth, that is the time dependence of the position of the nucleus/parent phase interface. The concentration profile, the growth law, and the kinetics of the fraction of transformed phase are computed and compared with those attained for point islands. At odd with the point island approach the local kinetics of growth depends on initial supersaturation. On the other hand, the whole transformation kinetics is in good agreement with that of the point island model with an Avrami exponent close to the theoretical value n = 0.5. The concentration profile is well described by a polynomial function in the whole spatial domain, with an exception for the initial stage of the phase separation. The effect of the spatial distribution of the nuclei on the kinetics is also studied in the model case of hard-core correlation among nuclei.


Concentration Profile Diffusion Field Avrami Exponent Soft Impingement Mean Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is indebted with Prof. R. Molle for the helpful discussions and comments on the mathematical aspects of this study.


  1. 1.
    Schmalzried H (1974) Solid state reactions. Academic Press, Inc., New York/LondonGoogle Scholar
  2. 2.
    Fanfoni M, Tomellini M (1998) Il Nuovo Cimento 20:1171CrossRefGoogle Scholar
  3. 3.
    Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Intern Mater Rev 52:193CrossRefGoogle Scholar
  4. 4.
    Starink MJ (2004) Intern Mater Rev 49:193CrossRefGoogle Scholar
  5. 5.
    Rios PR, Oliveira JCPT, Oliveira VT, Castro JA (2006) Mater Res 9:165Google Scholar
  6. 6.
    Sekimoto K (1984) Phys Lett A 105:390CrossRefGoogle Scholar
  7. 7.
    Birnie DP III, Weinberg MC (1995) J Chem Phys 103:3742CrossRefGoogle Scholar
  8. 8.
    Pusztai T, Gránásy L (1998) Phys Rev B 57:14110CrossRefGoogle Scholar
  9. 9.
    Kooi BJ (2004) Phys Rev B 70:224108CrossRefGoogle Scholar
  10. 10.
    Burbelko AA, Fraś E, Kapturkiewicz W (2005) Mater Sci Eng A 413:429Google Scholar
  11. 11.
    Tomellini M, Fanfoni M (1997) Phys Rev B 55:14071CrossRefGoogle Scholar
  12. 12.
    Shepilov MP (2004) Glass Phys Chem 30:291CrossRefGoogle Scholar
  13. 13.
    Shepilov MP (2004) Glass Phys Chem 30:477CrossRefGoogle Scholar
  14. 14.
    Alekseechkin NV (2011) J Non Cryst Solids 357:3159CrossRefGoogle Scholar
  15. 15.
    Crespo D, Pradell T, Clavaguera-Mora MT, Clavaguera N (1997) Phys Rev B 55:3453CrossRefGoogle Scholar
  16. 16.
    Tomellini M, Fanfoni M (2012) Phys Rev E 85:021606CrossRefGoogle Scholar
  17. 17.
    Bruna P, Crespo D, Gonzalez-Cinca R, Pineda E (2006) J Appl Phys 100:054907CrossRefGoogle Scholar
  18. 18.
    Pernach M, Pietrzyk M (2008) Comp Mater Sci 44:783CrossRefGoogle Scholar
  19. 19.
    Zener C (1949) J Appl Phys 20:950CrossRefGoogle Scholar
  20. 20.
    Tomellini M (2003) J Alloys Comp 348:189CrossRefGoogle Scholar
  21. 21.
    Zhao J, Li H, Wang Q, He J (2008) Comput Mater Sci 44:400CrossRefGoogle Scholar
  22. 22.
    Zhao J, Li H, Zhang X, He J (2008) Mater Lett 62:3779CrossRefGoogle Scholar
  23. 23.
    Bos C, Sietsma J (2007) Scripta Mater 57:1088Google Scholar
  24. 24.
    Chen H, van der Zwaag S (2011) J Mater Sci 46:1328. doi: 10.1007/s10853-010-4922-5 CrossRefGoogle Scholar
  25. 25.
    Tomellini M (2011) Comp Mater Sci 50:2371CrossRefGoogle Scholar
  26. 26.
    Song SJ, Liu F, Jiang YH (2012) J Mater Sci 47:5987. doi: 10.1007/s10853-012-6504-1 CrossRefGoogle Scholar
  27. 27.
    Tomellini M (2008) J Mater Sci 43:7102. doi: 10.1007/s10853-008-3024-0s CrossRefGoogle Scholar
  28. 28.
    Tichonov AN, Samarskij AA (1981) In: Mir (ed) Equations of mathematical physics (in Italian). Mir Publisher, MoscowGoogle Scholar
  29. 29.
    Torquato S, Lu B, Rubinstein J (1990) Phys Rev A 41:2059CrossRefGoogle Scholar
  30. 30.
    Manciu M, Ruckenstein E (2004) Colloid Surf A Physicochem Eng Aspects 232:1CrossRefGoogle Scholar
  31. 31.
    Hillert M (1999) Acta Mater 47:4505CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma Tor VergataRomeItaly

Personalised recommendations