Journal of Materials Science

, Volume 48, Issue 16, pp 5475–5482 | Cite as

The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride

  • K. P. MatabolaEmail author
  • R. M. Moutloali


Electrospinning was used to produce PVDF nonwoven fiber mats under varying parameters of polymer concentration, applied voltage, salt content, and spinning distance. The results indicated that both the polymer and salt concentration had a noteworthy influence on both the morphology and diameter of the nanofibers. Improved fiber morphology and increased PVDF fiber diameter were observed as the PVDF concentration was increased. Adding different concentrations of NaCl to the PVDF polymer solution resulted in improved electrospinnability of PVDF resulting in better morphology and with increasing salt content, smaller fiber diameter. In particular increasing the salt content led to well defined fibers in otherwise nonfiber-producing formulations. The applied voltage and spinning distance were also seen to have an influence on the properties of the PVDF nanofibers. Nanofibers without beads were formed under the improved conditions of the different parameters studied.


PVDF Applied Voltage Fiber Diameter DMAc Electrospun Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks DST/Mintek Nanotechnology Innovation Centre (SA) for permission to publish the results and providing the financial support. Dr Phumlani Mdluli and Mr Mokae Bambo are thanked for proof reading the manuscript and SEM analysis, respectively.


  1. 1.
    Daels N, De Vrieze S, Sampers I, Decostere B, Westbroek P, Dumoulin A, Dejans P, De Clerk K, Van Hulle SWH (2011) Desalination 275:285CrossRefGoogle Scholar
  2. 2.
    De Vrieze S, van Camp T, Nelvig A, Hagstrom B, Westbroek P, De Clerck K (2009) J Mater Sci 44:1357. doi: 10.1007/s10853-008-3010-6 CrossRefGoogle Scholar
  3. 3.
    Botes M, Cloete TE (2007) Crit Rev Microbiol 36:68CrossRefGoogle Scholar
  4. 4.
    Smit E, Buttner U, Sanderson RD (2005) Polymer 46:2419CrossRefGoogle Scholar
  5. 5.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223CrossRefGoogle Scholar
  6. 6.
    Formhals A (2003) US Patent 1,975,504Google Scholar
  7. 7.
    Melechko AV, Guillorn MA, Lowndes DH, Simpson ML (2002) Appl Phys Lett 80:4816CrossRefGoogle Scholar
  8. 8.
    Ding W, Wei S, Zhu J, Chen X, Rutman D, Guo Z (2010) Macromol Mater Eng 295:958CrossRefGoogle Scholar
  9. 9.
    Jacobs V, Anandjiwala RD, Maaza M (2010) J Appl Polym Sci 115:3130CrossRefGoogle Scholar
  10. 10.
    Srinivasan G, Reneker DH (1995) Polym Int 36:195CrossRefGoogle Scholar
  11. 11.
    Reneker DH, Chun I (1996) Nanotechnology 7:216CrossRefGoogle Scholar
  12. 12.
    Yarin AL, Koombhongse RenekerDH (2001) J Appl Phys 89:3015CrossRefGoogle Scholar
  13. 13.
    Jin H, Du X, Jiang Y (2009) Proc of SPIE 7508:750814. doi: 10.1117/12.837918 CrossRefGoogle Scholar
  14. 14.
    Cozza ES, Monticelli O, Marsano E, Cebe P (2012) Polym Int. doi: 10.1002/pi.4314 Google Scholar
  15. 15.
    Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) J Memb Sci 281:581CrossRefGoogle Scholar
  16. 16.
    Liao Y, Wang R, Tian M, Qiu C, Fane AG (2013) J Memb Sci 425–426:30CrossRefGoogle Scholar
  17. 17.
    Zong X, Kim K, Fang D, Ran S, Chu B (2002) Polymer 43:4403CrossRefGoogle Scholar
  18. 18.
    Arayanarakul K, Choktaweesap N, Aht-ong D, Meechaisue C, Supaphol P (2006) Macromol Mater Eng 291:581CrossRefGoogle Scholar
  19. 19.
    Deitzel JM, Kleinmeyer J, Beck HarrisD, Tan NC (2001) Polymer 42:261CrossRefGoogle Scholar
  20. 20.
    Fong H, Chun I, Reneker DH (2000) Polymer 40:4585CrossRefGoogle Scholar
  21. 21.
    Jin H, Du X, Jiang Y (2009) Proc of SPIE 7508:750814. doi: 10.1117/12.837918 CrossRefGoogle Scholar
  22. 22.
    Sill TJ, von Recum HA (2008) Biomater 29:1989. doi: 10.1016/j.biomaterials.2008.01.011 CrossRefGoogle Scholar
  23. 23.
    Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramakrishna SS (2005) J Appl Polym Sci 96:557CrossRefGoogle Scholar
  24. 24.
    Choi SS, Lee YS, Joo CW, Lee SG, Park J, Hang KH (2004) Elect Acta 50:339CrossRefGoogle Scholar
  25. 25.
    Zhao Z, Zhang J, Wang M, Zhang H, Han CC (2012) J Memb Sci 394–395:209CrossRefGoogle Scholar
  26. 26.
    Yee WA, Kotaki M, Liu Y, Lu X (2007) Polymer 48:512CrossRefGoogle Scholar
  27. 27.
    Li Q, Jia Z, Yang Y, Wang L, Guan Z (2007) Proc of IEEE internat conf solid Dielec. doi: 10.1109/ICSD.2007.4290790 Google Scholar
  28. 28.
    Wang T, Kumar S (2006) J Appl Polym Sci 102:1023CrossRefGoogle Scholar
  29. 29.
    Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Eur Polym J 41:423CrossRefGoogle Scholar
  30. 30.
    Ziabari M, Mottaghitalag V, Haghi AK (2010) Kor J Chem Eng 27:340CrossRefGoogle Scholar
  31. 31.
    Sui X, Wiesel E, Dagner EH (2011) J Nanosci Nanotechnol 11:7931–7936CrossRefGoogle Scholar
  32. 32.
    Wright LD, Andric T, Freeman JW (2011) Mater Sci Eng C 31:30CrossRefGoogle Scholar
  33. 33.
    Wang Y, Wang B, Wang G, Yin T, Yu Q (2009) Polym Bull 63:259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Advanced Materials Division, DST/Mintek Nanotechnology Innovation CentreMintekJohannesburgSouth Africa

Personalised recommendations