Advertisement

Journal of Materials Science

, Volume 48, Issue 16, pp 5429–5436 | Cite as

Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries

  • Syed Mustansar Abbas
  • Syed Tajammul Hussain
  • Saqib Ali
  • Nisar Ahmad
  • Nisar Ali
  • Saghir Abbas
Article

Abstract

Metal oxides are well-known potential alternatives to graphite as anode materials of lithium-ion batteries, and they can deliver much higher reversible capacities than graphite even at high current densities. In this study, hexagonal disk-shaped ZnO are synthesized by a facile solution reaction of ZnCl2 and its composite is prepared in the presence of carbon nanotubes (CNTs). The as prepared ZnO/CNT composite has been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fourier transform-infrared spectroscopy and Rutherford backscattering spectroscopy. Electrochemical characterization by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge tests demonstrate that the conversion reactions in ZnO and ZnO/CNT electrodes enable reversible capacity of 478 and 602 mAh g−1, respectively for up to 50 cycles. Our investigation highlights the importance of anchoring of small ZnO particles on CNTs for maximum utilization of electrochemically active ZnO and CNTs for energy storage application in lithium-ion batteries.

Keywords

Anode Material Reversible Capacity Rutherford Backscatting Spectroscopy ZnAl2O4 Solid Electrolyte Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported and funded by the Higher Education Commission (HEC) of Pakistan.

References

  1. 1.
    Wang J, Du N, Zhang H, Yu J, Yang D (2011) Mater Res Bull 46:2378CrossRefGoogle Scholar
  2. 2.
    Huggins RA (1998) Solid State Ionics 113–115:57CrossRefGoogle Scholar
  3. 3.
    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395CrossRefGoogle Scholar
  4. 4.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496CrossRefGoogle Scholar
  5. 5.
    Taberna P-L, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) Nat Mater 5:567CrossRefGoogle Scholar
  6. 6.
    Liu B, Zeng HC (2004) J Am Chem Soc 126:8124CrossRefGoogle Scholar
  7. 7.
    Li H, Balaya P, Maier J (2004) J Electrochem Soc 151:A1878CrossRefGoogle Scholar
  8. 8.
    Wan Q, Huang J, Lu A, Wang T (2008) Appl Phys Lett 93:103109CrossRefGoogle Scholar
  9. 9.
    Hossain MF, Takahashi T (2010) Mater Chem Phys 124:940CrossRefGoogle Scholar
  10. 10.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nat Mater 4:455CrossRefGoogle Scholar
  11. 11.
    Zhuo RF, Feng HT, Chen JT, Yan D, Feng JJ, Li HJ, Geng BS, Cheng S, Xu XY, Yan PX (2008) J Phys Chem C 112:11767CrossRefGoogle Scholar
  12. 12.
    Liu X, Geng D, Meng H, Shang P, Zhang Z (2008) Appl Phys Lett 92:173117CrossRefGoogle Scholar
  13. 13.
    Huang X, Xia X, Yuan Y, Zhou F (2011) Electrochim Acta 56:4960CrossRefGoogle Scholar
  14. 14.
    Pan Q, Qin L, Liu J, Wang H (2010) Electrochim Acta 55:5780CrossRefGoogle Scholar
  15. 15.
    Zhou Y-N, Li W-J, Fu Z-W (2011) Electrochim Acta 59:435CrossRefGoogle Scholar
  16. 16.
    Zhang C, Tu J, Yuan Y, Huang X, Chen X, Mao F (2007) J Electrochem Soc 154:A65CrossRefGoogle Scholar
  17. 17.
    Yan G-F, Fang H-S, Li G-S, Li L-P, Zhao H-J, Yang Y (2009) Chin J Struct Chem 28:409Google Scholar
  18. 18.
    Tang X, Pan Q, Liu J (2010) J Electrochem Soc 157:A55CrossRefGoogle Scholar
  19. 19.
    Wang H, Pan Q, Cheng Y, Zhao J, Yin G (2009) Electrochim Acta 54:2851CrossRefGoogle Scholar
  20. 20.
    Xu C, Sun J, Gao L (2011) J Power Sources 196:5138CrossRefGoogle Scholar
  21. 21.
    Xiang J, Tu J, Zhang J, Zhong J, Zhang D, Cheng J (2010) Electrochem Commun 12:1103CrossRefGoogle Scholar
  22. 22.
    Liu X-M, Huang Z-D, Oh S-W, Zhang B, Ma P-C, Yuen MM, Kim J-K (2011) Composs Sci Technol 72:121CrossRefGoogle Scholar
  23. 23.
    Varzi A, Täubert C, Wohlfahrt-Mehrens M, Kreis M, Schütz W (2011) J Power Sources 196:3303CrossRefGoogle Scholar
  24. 24.
    Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) Nano Lett 5:1231CrossRefGoogle Scholar
  25. 25.
    Yu H, Zhang Z, Han M, Hao X, Zhu F (2005) J Am Chem Soc 127:2378CrossRefGoogle Scholar
  26. 26.
    Lucas M, Mai W, Yang R, Wang ZL, Riedo E (2007) Nano Lett 7:1314CrossRefGoogle Scholar
  27. 27.
    Li L, Pan S, Dou X, Zhu Y, Huang X, Yang Y, Li G, Zhang L (2007) J Phys Chem C 111:7288CrossRefGoogle Scholar
  28. 28.
    Liu B, Zeng HC (2004) J Am Chem Soc 126:16744CrossRefGoogle Scholar
  29. 29.
    Fu Y-S, Du X-W, Sun J, Song Y-F, Liu J (2007) J Phys Chem C 111:3863CrossRefGoogle Scholar
  30. 30.
    Hu JQ, Li Q, Wong NB, Lee CS, Lee ST (2002) Chem Mater 14:1216CrossRefGoogle Scholar
  31. 31.
    Jang J-M, Kim C-R, Ryu H, Razeghi M, Jung W-G (2008) J Alloys Compds 463:503CrossRefGoogle Scholar
  32. 32.
    Wang F, Cao L, Pan A, Liu R, Wang X, Zhu X, Wang S, Zou B (2007) J Phys Chem C 111:7655CrossRefGoogle Scholar
  33. 33.
    Li C, Fang G, Su F, Li G, Wu X, Zhao X (2006) Cryst Growth Des 6:2588CrossRefGoogle Scholar
  34. 34.
    Osorio AG, Silveira ICL, Bueno VL, Bergmann CP (2008) Appl Surf Sci 255:2485CrossRefGoogle Scholar
  35. 35.
    Anžlovar A, Orel ZC, Žigon M (2010) Eur Polym J 46:1216CrossRefGoogle Scholar
  36. 36.
    Mai Y, Wang X, Xiang J, Qiao Y, Zhang D, Gu C, Tu J (2011) Electrochim Acta 56:2306CrossRefGoogle Scholar
  37. 37.
    Park K-W, Jung JH (2012) J Power Sources 199:379CrossRefGoogle Scholar
  38. 38.
    Panigrahy B, Aslam M, Misra D, Bahadur D (2009) Cryst Eng Comm 11:1920CrossRefGoogle Scholar
  39. 39.
    De Dood MJA, Kalkman J, Strohhöfer C, Michielsen J, van der Elsken J (2003) J Phys Chem B 107:5906CrossRefGoogle Scholar
  40. 40.
    Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H (2010) Electrochim Acta 55:2582CrossRefGoogle Scholar
  41. 41.
    Fu Z-W, Huang F, Zhang Y, Chu Y, Qin Q-Z (2003) J Electrochem Soc 150:A714CrossRefGoogle Scholar
  42. 42.
    Liu J, Li Y, Ding R, Jiang J, Hu Y, Ji X, Chi Q, Zhu Z, Huang X (2009) J Phys Chem C 113:5336CrossRefGoogle Scholar
  43. 43.
    Liu J, Li Y, Huang X, Li G, Li Z (2008) Adv Funct Mater 18:1448CrossRefGoogle Scholar
  44. 44.
    Ahmad M, Yingying S, Nisar A, Sun H, Shen W, Wei M, Zhu J (2011) J Mater Chem 21:7723CrossRefGoogle Scholar
  45. 45.
    Ahmad M, Yingying S, Sun H, Shen W, Zhu J (2012) J Solid State Chem 196:326CrossRefGoogle Scholar
  46. 46.
    Huang X, Wu J, Lin Y, Guo R (2012) Int J Electrochem Sci 7:6611Google Scholar
  47. 47.
    Song W-T, Xie J, Liu S-Y, Zheng Y-X, Cao G-S, Zhu T-J, Zhao X-B (2012) Int J Electrochem Sci 7:2164Google Scholar
  48. 48.
    Wu Z, Qin L, Pan Q (2011) J Alloys Compds 509:9207CrossRefGoogle Scholar
  49. 49.
    Yang S, Song H, Chen X (2006) Electrochem Commun 8:137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Syed Mustansar Abbas
    • 1
    • 2
  • Syed Tajammul Hussain
    • 1
  • Saqib Ali
    • 2
  • Nisar Ahmad
    • 3
  • Nisar Ali
    • 4
  • Saghir Abbas
    • 2
  1. 1.Nanoscience and Catalysis DivisionNational Centre for PhysicsIslamabadPakistan
  2. 2.Department of ChemistryQuaid-e-Azam UniversityIslamabadPakistan
  3. 3.Department of ChemistryHazara UniversityMansehraPakistan
  4. 4.Department of PhysicsUniversity of PunjabLahorePakistan

Personalised recommendations