Advertisement

Journal of Materials Science

, Volume 48, Issue 15, pp 5253–5260 | Cite as

Electrolytic one-pot synthesis of Group II nanohydroxyapatites

  • Ricardo Montalbert-Smith Echeverría
  • Mavis L. Montero
Article

Abstract

Several magnesium-doped calcium, calcium, strontium, and barium nanohydroxyapatites are synthesized using a saturated solution system (M2+/EDTA/PO4 3−) in a simple electrochemical cell. It was demonstrated that the nature of the precipitates does not depend on reaction time or subsequent treatments. Calcium apatite can be prepared from pH solution spanning 4.0–13.0 and current density from 50 to 260 mA cm−2. Interestingly, strontium and barium apatite synthesis strongly depends on the stability of the saturated solution and the nature of the counter ion in solution. In addition, preliminary kinetic studies indicate a zero-order reaction. FTIR, X-ray diffraction, thermogravimetric analysis, and TEM studies are also reported.

Keywords

Apatite Hydroxyapatite Constant Current Density Calcium Hydroxyapatite EDTA Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially supported by the CONICIT-MICIT Costa Rica. The authors gratefully thank Dr. Dionisio Gutiérrez, Dr. Leslie Pineda, M.Sc. Leonardo Rojas, and M.Sc. Diego González for useful discussions.

Supplementary material

10853_2013_7316_MOESM1_ESM.docx (631 kb)
Supplementary material 1 (DOCX 630 kb)

References

  1. 1.
    Dorozhkin SV (2007) J Mater Sci 42:1061. doi: 10.1007/s10853-006-1467-8 CrossRefGoogle Scholar
  2. 2.
    Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Chem Rev 108:4754CrossRefGoogle Scholar
  3. 3.
    Elliott JC (1994) Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Studies in Organic Chemistry, Elsevier Science B.V 18Google Scholar
  4. 4.
    Cruz JL, Canongia JN, Calado JC (2006) J Phys Chem B 110:4387CrossRefGoogle Scholar
  5. 5.
    Ma G, Liu XY (2009) Cryst Growth Des 9:2991CrossRefGoogle Scholar
  6. 6.
    Pan HB, Li ZY, Lam WM, Wong JC, Darvell BW, Luk KDK, Lu WW (2009) Acta Biomater 5:1678CrossRefGoogle Scholar
  7. 7.
    Sudarsanan K, Young RA (1972) Acta Crystallogr Sect B 28:3668CrossRefGoogle Scholar
  8. 8.
    Young RA (1974) J Dent Res 53:193CrossRefGoogle Scholar
  9. 9.
    Wang L, Nancollas GH (2008) Chem Rev 108:4628CrossRefGoogle Scholar
  10. 10.
    Flora NJ, Yoder CH (2004) Inorg Chem 43:2340CrossRefGoogle Scholar
  11. 11.
    Sugiyama S, Shono T, Nitta E, Hayashi H (2001) Appl Catal A 211:123CrossRefGoogle Scholar
  12. 12.
    Yasukawa A, Nakajima M, Kandori K, Ishikawa T (1999) J Colloid Interface Sci 212:220CrossRefGoogle Scholar
  13. 13.
    Sang JL, Jin Hyuk JAE, Seung-Hwan L, Ki June Y, Tae Hoon L, Suk-Woo N, Seong-Ahn H (2002) Appl Catal A 230:61CrossRefGoogle Scholar
  14. 14.
    Xiu Z, Lu M, Suwen Liu S, Zhou G, Su B, Zhang H (2005) Mater Res Bull 40:1617CrossRefGoogle Scholar
  15. 15.
    Zhang C, Cheng Z, Yang P, Xu Z, Peng C, Li G, Lin J (2009) Langmuir 25:13591CrossRefGoogle Scholar
  16. 16.
    Devi N, Balu R, Kumar S (2012) J Am Ceram Soc 95:2700CrossRefGoogle Scholar
  17. 17.
    Renaudin G, Laquerrie` re P, Filinchuk Y, Jallot E, Nedelec JM (2008) J Mater Chem 18:3593CrossRefGoogle Scholar
  18. 18.
    Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, Skepper JN (2009) Biomaterials 30:3307CrossRefGoogle Scholar
  19. 19.
    Kalita S, Bhardwaj A, Bhatt HA (2007) Mater Sci Eng C 27:441CrossRefGoogle Scholar
  20. 20.
    Dorozhkin SV (2010) Acta Biomater 6:715CrossRefGoogle Scholar
  21. 21.
    Fox K, Phong AT, Nhiem T (2012) ChemPhysChem 13:2495CrossRefGoogle Scholar
  22. 22.
    Stark WJ (2011) Angew Chem Int Ed 50:1242CrossRefGoogle Scholar
  23. 23.
    Tae-Gon K, Byungwoo P (2005) Inorg Chem 44:9895CrossRefGoogle Scholar
  24. 24.
    Yang Q, Wang J-X, Guo F, Chen J-F (2010) Ind Eng Chem Res 49:9857CrossRefGoogle Scholar
  25. 25.
    Sada E, Kumazawa H, Murakami Y (1991) Chem Eng Commun 103:57CrossRefGoogle Scholar
  26. 26.
    Takeo H, Yasuhiko H, Murakami Y (1989) J Mater Sci Lett 8:305Google Scholar
  27. 27.
    Yang Q, Wang J-X, Guo F, Chen J-F (2010) Ind Eng Chem Res 49:9857CrossRefGoogle Scholar
  28. 28.
    Xiao-Feng P, Hong-juan Z, Jialie L, Shicheng W, Yufeng Z (2010) Mater Sci Appl 1:81Google Scholar
  29. 29.
    Liu DM, Troczynski T, Tseng WJ (2001) Biomaterials 22:1721CrossRefGoogle Scholar
  30. 30.
    Wang J, Shaw L (2009) J Mater Sci-Mater M 20:1223CrossRefGoogle Scholar
  31. 31.
    Weng W, Han G, Du P, Shen G (2002) Mater Chem Phys 74:92CrossRefGoogle Scholar
  32. 32.
    Schachschal S, Pich A, Adler H-J (2008) Langmuir 24:5129CrossRefGoogle Scholar
  33. 33.
    Bose S, Kumar S (2003) Chem Mater 15:4464CrossRefGoogle Scholar
  34. 34.
    Uota M, Arakawa H, Kitamura N, Yoshimura T, Tanaka T, Kijima T (2005) Langmuir 21:4724CrossRefGoogle Scholar
  35. 35.
    Sternlieb MP, Brown MH, Schaeffer C Jr, Yoder CH (2009) Polyhedron 28:729CrossRefGoogle Scholar
  36. 36.
    Ten Huisen KS, Brown PW (1998) Biomaterials 19:2209CrossRefGoogle Scholar
  37. 37.
    Durucan C, Brown PW (2000) J Mater Sci Mater Med 11:365CrossRefGoogle Scholar
  38. 38.
    Veilleux D, Barthelemy N, Trombe JC, Verelst M (2001) J Mater Sci 36:2245. doi: 10.1023/A:1017508520126 CrossRefGoogle Scholar
  39. 39.
    Sang-Hoon R (2002) Biomaterials 23:1147CrossRefGoogle Scholar
  40. 40.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS (2004) Biomaterials 25:4647CrossRefGoogle Scholar
  41. 41.
    Jevtić M, Mitrić M, Škapin S, Jančar B, Ignjatović N, Uskoković D (2008) Cryst Growth Des 8:2217CrossRefGoogle Scholar
  42. 42.
    Zhao X, Li H, Chen M, Li K, Lu j, Zhang L, Cao S (2012) Surf Interface Anal 44:21CrossRefGoogle Scholar
  43. 43.
    Xiao-feng P, Yong H (2012) J Nanosci Nanotechnol 12:902CrossRefGoogle Scholar
  44. 44.
    Yong H, Xiao-feng P, Gun L, Ya-jing Y, Shu-guan H, Hong-juan Z (2012) Spectroc Spect Anal 32:1771Google Scholar
  45. 45.
    Kim W, Saito F (2001) Ultrason Sonochem 8:85CrossRefGoogle Scholar
  46. 46.
    Cengiz B, Gokce Y, Yildiz N, Aktas Z, Calimli A (2008) Colloids Surf A 322:29CrossRefGoogle Scholar
  47. 47.
    Kumar AR, Kalainathan S (2008) Crystal Res Technol 43:640CrossRefGoogle Scholar
  48. 48.
    Parhi P, Ramanan A, Ray AR (2006) Mater Lett 60:218CrossRefGoogle Scholar
  49. 49.
    Parhi P, Ramanan A, Ray AR (2006) J Mater Sci 41:1455. doi: 10.1007/s10853-006-7460-4 CrossRefGoogle Scholar
  50. 50.
    Parhi P, Ray AR, Ramanan A (2007) J Am Ceram Soc 90:1237CrossRefGoogle Scholar
  51. 51.
    Kim DW, Cho I-S, Kim JY, Jang HL, Han GS, Ryu H-S, Shin H, Jung HS, Kim H, Hong KS (2010) Langmuir 26:384CrossRefGoogle Scholar
  52. 52.
    Tadic D, Peters F, Epple M (2002) Biomaterials 23:2553CrossRefGoogle Scholar
  53. 53.
    Christiansen N and Riman RE (1989) In: Hansson ILH and Lilhot H (eds) Proceedings of the 5th Scandinavian Symposium on Materials Science, New Materials and Processes. Danish Society for Materials Testing and Research, Copenhagen, Denmark, 209Google Scholar
  54. 54.
    Yoshimura M, Suda H, Okamoto K, Ioku K (1991) Nippon Kagaku Kaishi 10:1402CrossRefGoogle Scholar
  55. 55.
    Toriyama M, Kawamoto Y, Suzuki T, Yokogawa Y, Nishizawa K, Nagae H (1992) J Ceram Soc Jap 100:950CrossRefGoogle Scholar
  56. 56.
    Yoshimura M, Suda H, Okamoto K, Ioku K (1994) J Mater Sci 29:3399. doi: 10.1007/BF00352039 CrossRefGoogle Scholar
  57. 57.
    López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R (1998) Adv Mater 10:4CrossRefGoogle Scholar
  58. 58.
    Arce H, Montero ML, Sáenz A, Castaño VM (2004) Polyhedron 23:1897CrossRefGoogle Scholar
  59. 59.
    Arguedas R, Ledezma M, Sáenz A, Arias JD, Montero ML (2008) Z Anorg Allg Chem 10:1791CrossRefGoogle Scholar
  60. 60.
    Montero ML, Sáenz A, Rodríguez JG, Arenas J, Castaño VM (2006) J Mater Sci 41:2141. doi: 10.1007/s10853-006-5231-x CrossRefGoogle Scholar
  61. 61.
    Montalbert-Smith R, Palma CA, Arias JD, Montero ML (2009) Key Eng Mat 396:579CrossRefGoogle Scholar
  62. 62.
    Glimcher MJ, Bonar MD, Grynpas WJ, Roufosse AH (1981) J Crystal Grow 53:100CrossRefGoogle Scholar
  63. 63.
    Jäger C, Welzel T, Meyer-Zaika W, Epple M (2006) Magn Reson Chem 44:573CrossRefGoogle Scholar
  64. 64.
    Danilchenko SN, Moseke C, Sukhodub LF, Sulkio-Cleff B (2004) Cryst Res Technol 39:71CrossRefGoogle Scholar
  65. 65.
    Fleet ME, Liu X (2007) Biomaterials 28:916CrossRefGoogle Scholar
  66. 66.
    Liao C-J, Lin FH, Chen KS, Sun JS (1999) Biomaterials 20:807CrossRefGoogle Scholar
  67. 67.
    Skoog DA, West DM, Holler FJ (2001) Fundamentals of Analytical Chemistry, 5th edn. McGraw Hill, New YorkGoogle Scholar
  68. 68.
    Mann S (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, 1st edn. Oxford University Press, OxfordGoogle Scholar
  69. 69.
    Pakalapati SNR, Popov BN, White RE (1996) J Electrochem Soc 143:1636CrossRefGoogle Scholar
  70. 70.
    Reetz MT, Maase M (1999) Adv Mater 11:773CrossRefGoogle Scholar
  71. 71.
    Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401CrossRefGoogle Scholar
  72. 72.
    Reetz MT, Helbig W, Quaiser SA (1995) Chem Mater 7:2227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ricardo Montalbert-Smith Echeverría
    • 1
  • Mavis L. Montero
    • 1
    • 2
    • 3
  1. 1.Escuela de QuímicaUniversidad de Costa RicaSan JoséCosta Rica
  2. 2.Centro de Electroquímica y Energía Química, (CELEQ)Universidad de Costa RicaSan JoséCosta Rica
  3. 3.Centro de Investigación en Ciencia e Ingeniería de Materiales, (CICIMA)Universidad de Costa RicaSan JoséCosta Rica

Personalised recommendations