Journal of Materials Science

, Volume 48, Issue 15, pp 5209–5218 | Cite as

Electrochemical template synthesis of protein-imprinted magnetic polymer microrods

  • Giorgio Ceolin
  • Ágnes Orbán
  • Vilmos Kocsis
  • Róbert E. Gyurcsányi
  • István Kézsmárki
  • Viola Horváth


A novel method for the electrochemical template synthesis of surface-imprinted magnetic polymer microrods for protein recognition is proposed. The polymer was electrodeposited into sacrificial cylindrical microreactors, the internal walls of which were previously modified with a target model protein, avidin, by simple physisorption. The electropolymerization was performed from a mixture of 3,4-ethylenedioxythiophene, poly(styrenesulfonate) (PSS), and PSS-coated superparamagnetic nanoparticles resulting in the formation of inherently electroconductive polymers confined to the volume of the microreactor. Here we show that: (i) the template synthesis within cylindrical microreactors results in polymer rods with dimensions matching that of the reactor, (ii) the incorporation of superparamagnetic particles induces magnetic properties that allow for efficient collection and manipulation of the microrods released from the microreactors in magnetic field even from dilute solution, and (iii) the protein coating on the internal walls of the microreactors is shown to generate molecular imprints on the surface of the polymeric rods. This latter property was demonstrated by comparative binding experiments of a fluorescent avidin derivative to the surface-imprinted and non-imprinted magnetic polymer microrods.



This work is connected to the scientific program of the “Development of quality-oriented and harmonized R + D + I strategy and functional model at BME” project (TÁMOP-4.2.1/B-09/1/KMR-2010–0002). This work was supported by the European Commission (MRTN-CT-2006-033873) and Hungarian OTKA under Grant Nos. PD75615, K104724, and CNK80991. The authors would like to thank Dr. László Ferenc Kiss for the assistance during the magnetization measurements and Prof. László Bezúr for the atomic absorption measurements.


  1. 1.
    Sellergren B (ed) (2001) Molecularly imprinted polymers: Man-made mimics of antibodies and their applications in analytical chemistry. Techniques and Instrumentation in Analytical Chemistry, vol 23. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2003) Molecular imprinting from fundamentals to applications. Wiley, WeinheimGoogle Scholar
  3. 3.
    Yan M, Ramström O (eds) (2005) Molecularly imprinted materials: science and technology. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Haupt K (ed) (2012) Molecular imprinting. topics in current chemistry, vol 325. Springer, New YorkGoogle Scholar
  5. 5.
    Pichon V (2007) J Chromatogr A 1152:41. doi: 10.1016/j.chroma.2007.02.109 CrossRefGoogle Scholar
  6. 6.
    Toth B, Horvai G (2012) Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs. In: Haupt K (ed) Molecular imprinting. Topics in current chemistry, vol 325. pp 267. doi: 10.1007/128_2010_100
  7. 7.
    Resmini M (2012) Anal Bioanal Chem 402:3021. doi: 10.1007/s00216-011-5671-2 CrossRefGoogle Scholar
  8. 8.
    Holthoff EL, Bright FV (2007) Anal Chim Acta 594:147. doi: 10.1016/j.aca.2007.05.044 CrossRefGoogle Scholar
  9. 9.
    Moreno-Bondi MC, Navarro-Villoslada F, Benito-Pena E, Urraca JL (2008) Curr Anal Chem 4:316. doi: 10.2174/157341108785914925 CrossRefGoogle Scholar
  10. 10.
    Suryanarayanan V, Wu CT, Ho KC (2010) Electroanalysis 22:1795. doi: 10.1002/elan.200900616 CrossRefGoogle Scholar
  11. 11.
    Kryscio DR, Peppas NA (2012) Acta Biomater 8:461. doi: 10.1016/j.actbio.2011.11.005 CrossRefGoogle Scholar
  12. 12.
    Chen LG, Li B (2012) Anal Methods 4:2613. doi: 10.1039/c2ay25354b CrossRefGoogle Scholar
  13. 13.
    Ansell RJ, Mosbach K (1998) Analyst 123:1611. doi: 10.1039/A801903G CrossRefGoogle Scholar
  14. 14.
    Chen LG, Liu J, Zeng QL, Wang H, Yu AM, Zhang HQ, Ding L (2009) J Chromatogr A 1216:3710. doi: 10.1016/j.chroma.2009.02.044 CrossRefGoogle Scholar
  15. 15.
    Chen LG, Zhang XP, Sun L, Xu Y, Zeng QL, Wang H, Xu HY, Yu AM, Zhang HQ, Ding L (2009) J Agric Food Chem 57:10073. doi: 10.1021/jf902257d CrossRefGoogle Scholar
  16. 16.
    Chen LG, Zhang XP, Xu Y, Du XB, Sun X, Sun L, Wang H, Zhao Q, Yu AM, Zhang HQ, Ding L (2010) Anal Chim Acta 662:31. doi: 10.1016/j.aca.2010.01.001 CrossRefGoogle Scholar
  17. 17.
    Gu XH, Xu R, Yuan GL, Lu H, Gu BR, Xie HP (2010) Anal Chim Acta 675:64. doi: 10.1016/j.aca.2010.06.033 CrossRefGoogle Scholar
  18. 18.
    Guo WL, Hu W, Pan JM, Zhou HC, Guan W, Wang X, Dai JD, Xu LC (2011) Chem Eng J (Lausanne) 171:603. doi: 10.1016/j.cej.2011.04.036 Google Scholar
  19. 19.
    Ji YS, Yin JJ, Xu ZG, Zhao CD, Huang HY, Zhang HX, Wang CM (2009) Anal Bioanal Chem 395:1125. doi: 10.1007/s00216-009-3020-5 CrossRefGoogle Scholar
  20. 20.
    Hoogvliet JC, Dijksma M, Kamp B, van Bennekom WP (2000) Anal Chem 72:2016. doi: 10.1021/ac991215y CrossRefGoogle Scholar
  21. 21.
    Lu SL, Cheng GX, Zhang HG, Pang XS (2006) J Appl Polym Sci 99:3241. doi: 10.1002/app.22997 CrossRefGoogle Scholar
  22. 22.
    Pan JM, Hu W, Dai XH, Guan W, Zou XH, Wang X, Huo PW, Yan YS (2011) J Mater Chem 21:15741. doi: 10.1039/c1jm12099a CrossRefGoogle Scholar
  23. 23.
    Pan JM, Yao H, Xu LC, Ou HX, Huo PW, Li XX, Yan YS (2011) J Phys Chem C 115:5440. doi: 10.1021/jp111120x CrossRefGoogle Scholar
  24. 24.
    Wang XB, Ding XB, Zheng ZH, Hu XH, Cheng X, Peng YX (2006) Macromol Rapid Commun 27:1180. doi: 10.1002/marc.200600211 CrossRefGoogle Scholar
  25. 25.
    Zhang XP, Chen LG, Xu Y, Wang H, Zeng QL, Zhao Q, Ren NQ, Ding L (2010) J Chromatogr, B: Anal Technol Biomed Life Sci 878:3421. doi: 10.1016/j.jchromb.2010.10.030 CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Liu RJ, Hu YL, Li G (2009) Anal Chem 81:967. doi: 10.1021/ac8018262 CrossRefGoogle Scholar
  27. 27.
    Medina-Castillo AL, Mistlberger G, Fernandez-Sanchez JF, Segura-Carretero A, Klimant I, Fernandez-Gutierrez A (2010) Macromolecules 43:55. doi: 10.1021/ma902095s CrossRefGoogle Scholar
  28. 28.
    Gai QQ, Qu F, Liu ZJ, Dai RJ, Zhang YK (2010) J Chromatogr A 1217:5035. doi: 10.1016/j.chroma.2010.06.001 CrossRefGoogle Scholar
  29. 29.
    Gai QQ, Qu F, Zhang T, Zhang YK (2011) J Chromatogr A 1218:3489. doi: 10.1016/j.chroma.2011.03.069 CrossRefGoogle Scholar
  30. 30.
    Kan XW, Zhao Q, Shao DL, Geng Z, Wang ZL, Zhu JJ (2010) J Phys Chem B 114:3999. doi: 10.1021/jp910060c CrossRefGoogle Scholar
  31. 31.
    Li L, He XW, Chen LX, Zhang YK (2009) Chem–Asian J 4:286. doi: 10.1002/asia.200800300
  32. 32.
    Li L, He XW, Chen LX, Zhang YK (2009) Sci China. Ser B: Chem 52:1402. doi: 10.1007/s11426-009-0182-0 CrossRefGoogle Scholar
  33. 33.
    Liu JZ, Wang WZ, Xie YF, Huang YY, Liu YL, Liu XJ, Zhao R, Liu GQ, Chen Y (2011) J Mater Chem 21:9232. doi: 10.1039/c1jm10227c CrossRefGoogle Scholar
  34. 34.
    Qu P, Lei JP, Zhang L, Ouyang RZ, Ju HX (2010) J Chromatogr A 1217:6115. doi: 10.1016/j.chroma.2010.07.063 CrossRefGoogle Scholar
  35. 35.
    Wang X, Wang L, He X, Zhang Y, Chen L (2009) Talanta 78:327. doi: 10.1016/j.talanta.2008.11.024 CrossRefGoogle Scholar
  36. 36.
    Zhou WH, Lu CH, Guo XC, Chen FR, Yang HH, Wang XR (2010) J Mater Chem 20:880. doi: 10.1039/b916619j CrossRefGoogle Scholar
  37. 37.
    Gao RX, Kong X, Wang X, He XW, Chen LX, Zhang YK (2011) J Mater Chem 21:17863. doi: 10.1039/c1jm12414e CrossRefGoogle Scholar
  38. 38.
    Lautner G, Kaev J, Reut J, Opik A, Rappich J, Syritski V, Gyurcsanyi RE (2011) Adv Funct Mater 21:591. doi: 10.1002/adfm.201001753 CrossRefGoogle Scholar
  39. 39.
    Menaker A, Syritski V, Reut J, Opik A, Horvath V, Gyurcsanyi RE (2009) Adv Mater 21:2271. doi: 10.1002/adma.200803597 CrossRefGoogle Scholar
  40. 40.
    Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481. doi: 10.1002/(SICI)1521-4095(200004)12:7<481:AID-ADMA481>3.0.CO;2-C CrossRefGoogle Scholar
  41. 41.
    Martin CR (1994) Science 266:1961. doi: 10.1126/science.266.5193.1961 CrossRefGoogle Scholar
  42. 42.
    Sedlak M (2001) In: Radeva T (ed) Physical chemistry of polyelectrolytes. Surfactant science series, vol 99. Marcel Dekker New York pp 1Google Scholar
  43. 43.
    Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Eur Polym J 47:542. doi: 10.1016/j.eurpolymj.2010.11.006 CrossRefGoogle Scholar
  44. 44.
    Nematollahzadeh A, Sun W, Aureliano CSA, Lutkemeyer D, Stute J, Abdekhodaie MJ, Shojaei A, Sellergren B (2011) Angew Chem. Int Ed 50:495. doi: 10.1002/anie.201004774 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giorgio Ceolin
    • 1
  • Ágnes Orbán
    • 2
  • Vilmos Kocsis
    • 2
  • Róbert E. Gyurcsányi
    • 1
    • 3
  • István Kézsmárki
    • 2
  • Viola Horváth
    • 3
  1. 1.Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of PhysicsBudapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of SciencesBudapestHungary
  3. 3.MTA-BME Research Group of Technical Analytical ChemistryHungarian Academy of Sciences, Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations