Advertisement

Journal of Materials Science

, Volume 48, Issue 15, pp 5157–5162 | Cite as

Electronic structure, charge density, and chemical bonding properties of C11H8N2O o-methoxydicyanovinylbenzene (DIVA) single crystal

  • A. H. Reshak
  • H. Kamarudin
  • I. V. Kityk
  • S. Auluck
Article

Abstract

A comprehensive theoretical density functional theory (DFT) study of the electronic crystal structure, bonding properties, electron charge density of C11H8N2O o-methoxydicyanovinylbenzene (DIVA) single crystals were performed. The exchange and correlation potential was described within a framework of the local density approximation (LDA) by Ceperley-Alder and gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy. In addition, we have used Engel–Vosko generalized gradient approximation (EV-GGA) and the modified Becke–Johnson potential (mBJ) for the electronic crystal structure, bonding properties, electron charge density calculations. There is systematically increasing in the energy gap from 2.25 eV (LDA), 2.34 eV (GGA), 2.50 eV (EV-GGA), 2.96 eV (mBJ). Our calculations show that this crystal possess direct energy gap. Furthermore, the electronic charge density space distribution contours in the (1 1 0) crystallographic plane clarifies the nature of chemical bonding.

Keywords

Local Density Approximation Electronic Band Structure Valence Band Maximum Conduction Band Minimum Full Potential Linearize Augmented Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. The School of Materials Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia. S.A. thanks Council of Scientific and Industrial Research (CSIR) - National Physical Laboratory for financial support.

References

  1. 1.
    Zyss J., Ledoux I., Nicoud J. F. (1994). Mole Google Scholar
  2. 2.
    Desiraju GR (2002) Acc Chem Res 35:565CrossRefGoogle Scholar
  3. 3.
    Aakeroy CB, Seddon KR (1993) Chem Soc Rev 22:397CrossRefGoogle Scholar
  4. 4.
    Saha BK, Nangia A, Jaskolski M (2005) Cryst Eng Comm 7:355CrossRefGoogle Scholar
  5. 5.
    Russell VA, Etter MC, Ward MD (1994) J Am Chem Soc 116:1941CrossRefGoogle Scholar
  6. 6.
    Huang KS, Britton D, Etter MC, Byrn SR (1995) J Mater Chem 5:379CrossRefGoogle Scholar
  7. 7.
    Panunto TW, Urbanczyk-Lipkowska Z, Johnson R, Etter MC (1987) J Am Chem Soc 109:7786CrossRefGoogle Scholar
  8. 8.
    R. Custelcean, Chem. Commun. (Cambridge) 2008, 295Google Scholar
  9. 9.
    Yin Z, Li Z (2006) Tetrahedron Lett 47:7875CrossRefGoogle Scholar
  10. 10.
    Jazbinsek M, Kwon OP, Bosshard Ch, Günter P (2008) handbook of organic electronics and photonics. In: Nalwa SH (ed), American Scientific Publishers, Los AngelesGoogle Scholar
  11. 11.
    Bosshard Ch, Bösch M, Liakatas I, Jäger M, Günter P (2000) Nonlinear optical effects and materials. In: Günter P (ed), Springer, BerlinGoogle Scholar
  12. 12.
    Nalwa HS, Watanabe T, Miyata S (1997) Nonlinear optics of organic molecules and polymers. In: Nalwa HS, Miyata S (eds), CRC, Boca RatonGoogle Scholar
  13. 13.
    Zyss J, Oudar JL (1982) Phys Rev A 26:2028CrossRefGoogle Scholar
  14. 14.
    Kwon O-P, Jazbinsek M, Seo J-I, Choi E-Y, Yun H, Fabian DJ, Brunner Y, Lee S, Günter P (2009) J Chem Phys 130:134708CrossRefGoogle Scholar
  15. 15.
    Koch W, Holthausen MCAA (2000) Chemistry guide to density functional theory. Wiley, WeinheimGoogle Scholar
  16. 16.
    Parr RR, Yang RG (1989) Density functional theory of atoms and molecules. Oxford University Press, New York and references thereinGoogle Scholar
  17. 17.
    Gao S (2003) Comput Phys Commun 153:190CrossRefGoogle Scholar
  18. 18.
    Schwarz K (2003) J Solid State Chem 176:319CrossRefGoogle Scholar
  19. 19.
    Antipin MY, Barr AT, Cardelino HB, Clark DR, Moore EC, Myers T, Penn B, Romero M, Timofeeva VMST (1997) J Phys Chem B 101:2770CrossRefGoogle Scholar
  20. 20.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2 K, an augmented plane wave + local orbitals program for calculating crystal properties, Karlheinz Schwarz. Techn Universitat Wien, Wien. ISBN 3-9501031-1-2Google Scholar
  21. 21.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864CrossRefGoogle Scholar
  22. 22.
    Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Zunger A (1973) Phys Rev B 8:4822CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  25. 25.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  26. 26.
    Tran F, Blaha P (2009) Phys Rev Lett 102:226401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. H. Reshak
    • 1
    • 2
  • H. Kamarudin
    • 2
  • I. V. Kityk
    • 3
  • S. Auluck
    • 4
  1. 1.Institute of Complex Systems, FFPW, CENAKVAUniversity of South Bohemia in CBNove HradyCzech Republic
  2. 2.School of Material EngineeringMalaysia University of PerlisKangarMalaysia
  3. 3.Electrical Engineering DepartmentTechnological University of CzestochowaCzestochowaPoland
  4. 4.Council of Scientific and Industrial Research - National Physical LaboratoryNew DelhiIndia

Personalised recommendations