Journal of Materials Science

, Volume 48, Issue 14, pp 5055–5062 | Cite as

In situ tensile tests of single silk fibres in an environmental scanning electron microscope (ESEM)

  • Beth Mortimer
  • Daniel R. Drodge
  • Kalin I. Dragnevski
  • Clive R. Siviour
  • Chris Holland
Article

Abstract

Silk’s well-defined response to environmental conditions makes it a useful candidate to investigate the relationship between structure and function in biological materials. This area of research is of increasing importance as commonly employed microscopic and spectroscopic techniques often demand samples to be exposed to environments quite unlike those found in nature (i.e. low humidities and vacuum pressures). Whilst these conditions may enable high-quality structural data, their effects on a sample’s mechanical properties are not yet fully understood. Using in situ tensile testing, we determine the effects of sample preparation and environment on individual fibres of Bombyx mori silk under conditions suitable for environmental scanning electron microscopy. We report significant differences in mechanical properties of the silk, depending on both the sample preparation (coating and fibre mounting) and environment (vacuum, imaging gas and pump-down procedure). We interpret these differences within the context of sample hydration by comparison with ex situ stress–strain analysis of B. mori silk under conditions ranging from 10 to 80 % relative humidity. We conclude that silks, with their ready availability and ease of preparation, are an ideal validation material for future technique developments in this area.

Supplementary material

10853_2013_7293_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 43 kb)

References

  1. 1.
    Donald AM (2003) Nat Mater 2(8):511. doi:10.1038/nmat898 CrossRefGoogle Scholar
  2. 2.
    Danilatos GD (1991) J Microsc Oxf 162:391CrossRefGoogle Scholar
  3. 3.
    Kirk S, Skepper J, Donald AM (2009) J Microsc Oxf 233(2):205. doi:10.1111/j.1365-2818.2009.03111.x CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Eder M, Stanzl-Tschegg S, Burgert I (2008) Wood Sci Technol 42(8):679. doi:10.1007/s00226-008-0214-5 CrossRefGoogle Scholar
  6. 6.
    Mott L, Shaler SM, Groom LH (1996) Wood Fiber Sci 28(4):429Google Scholar
  7. 7.
    Thiel BL, Donald AM (1998) Ann Bot 82(6):727. doi:10.1006/anbo.1998.0732 CrossRefGoogle Scholar
  8. 8.
    Donald AM, Baker FS, Smith AC, Waldron KW (2003) Ann Bot 92(1):73. doi:10.1093/aob/mcg115 CrossRefGoogle Scholar
  9. 9.
    Stabentheiner E, Zankel A, Polt P (2010) Protoplasma 246(1–4):89. doi:10.1007/s00709-010-0155-3 CrossRefGoogle Scholar
  10. 10.
    Franbourg A, Hallegot P, Baltenneck F, Toutain C, Leroy F (2003) J Am Acad Dermatol 48(6):S115. doi:10.1067/mjd.2003.277 CrossRefGoogle Scholar
  11. 11.
    Bos HL, Donald AM (1999) J Mater Sci 34(13):3029. doi:10.1023/a:1004650126890 CrossRefGoogle Scholar
  12. 12.
    Stokes DJ, Donald AM (2000) J Mater Sci 35(3):599. doi:10.1023/a:1004720209547 CrossRefGoogle Scholar
  13. 13.
    Rizzieri R, Baker FS, Donald AM (2003) Polymer 44(19):5927. doi:10.1016/s0032-3861(03)00543-3 CrossRefGoogle Scholar
  14. 14.
    Taylor JE, Laity PR, Wong SS, Norris K, Khunkamchoo P, Cable M, Andrews G, Johnson AF, Cameron RE (2006) Microsc microanal 12(2):151. doi:10.1017/S1431927606060053 CrossRefGoogle Scholar
  15. 15.
    Rizzieri R, Mahadevan L, Vaziri A, Donald A (2006) Langmuir 22(8):3622. doi:10.1021/la052343m CrossRefGoogle Scholar
  16. 16.
    Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T (2011) IEEE Trans Nanotechnol 10(2):226. doi:10.1109/tnano.2009.2036997 CrossRefGoogle Scholar
  17. 17.
    Stokes DJ (2003) Philos Trans R Soc Lond A 361(1813):2771. doi:10.1098/rsta.2003.1279 CrossRefGoogle Scholar
  18. 18.
    Doucet FJ, Lead JR, Maguire L, Achterberg EP, Millward GE (2005) J Environ Monit 7(2):115. doi:10.1039/b413832e CrossRefGoogle Scholar
  19. 19.
    Mestres P, Puetz N, Gomez de las Heras SG, Garcia Poblete E, Morguet A, Laue M (2011) Ann Anat 193(3):197. doi:10.1016/j.aanat.2011.02.016 CrossRefGoogle Scholar
  20. 20.
    Misirli Z, Oener ET, Kirdar B (2007) Scanning 29(1):11. doi:10.1002/sca.20005 CrossRefGoogle Scholar
  21. 21.
    Jing X, Shuling G, Ying L (2005) Microsc Res Tech 68(5):284. doi:10.1002/jemt.20253 CrossRefGoogle Scholar
  22. 22.
    McGregor JE, Donald AM (2010) J Microsc 239(2):135. doi:10.1111/j.1365-2818.2009.03351.x Google Scholar
  23. 23.
    Fu C, Shao Z, Fritz V (2009) Chem Commun (Camb) 43:6515CrossRefGoogle Scholar
  24. 24.
    Vollrath F, Porter D, Holland C (2011) Soft Matter 7(20):9595. doi:10.1039/c1sm05812f CrossRefGoogle Scholar
  25. 25.
    Craig C (1997) Ann Rev Entomol 42:231. doi:10.1146/annurev.ento.42.1.231 CrossRefGoogle Scholar
  26. 26.
    Chen F, Porter D, Vollrath F (2012) J R Soc Interface. doi:10.1098/rsif.2011.0887 Google Scholar
  27. 27.
    Jauzein V, Bunsell A (2012) J Mater Sci 47(7):3082. doi:10.1007/s10853-011-6141-0 CrossRefGoogle Scholar
  28. 28.
    Murase N, Ruike M, Matsunaga N, Hayakawa M, Kaneko Y, Ono Y (2001) Naturwissenschaften 88(3):117. doi:10.1007/s001140100205 CrossRefGoogle Scholar
  29. 29.
    Zax DB, Armanios DE, Horak S, Malowniak C, Yang ZT (2004) Biomacromolecules 5(3):732. doi:10.1021/bm034309x CrossRefGoogle Scholar
  30. 30.
    Zhang K, Si FW, Duan HL, Wang J (2010) Acta Biomater 6(6):2165. doi:10.1016/j.actbio.2009.12.030 CrossRefGoogle Scholar
  31. 31.
    Fu CJ, Porter D, Shao ZZ (2009) Macromolecules 42(20):7877. doi:10.1021/ma901321k CrossRefGoogle Scholar
  32. 32.
    Liu Y, Shao ZZ, Vollrath F (2005) Nat Mater 4(12):901. doi:10.1038/nmet1534 CrossRefGoogle Scholar
  33. 33.
    Vollrath F, Edmonds DT (1989) Nature 340(6231):305. doi:10.1038/340305a0 CrossRefGoogle Scholar
  34. 34.
    Hu X, Kaplan D, Cebe P (2008) Macromolecules 41(11):3939. doi:10.1021/Ma071551d CrossRefGoogle Scholar
  35. 35.
    Bogner A, Thollet G, Basset D, Jouneau PH, Gauthier C (2005) Ultramicroscopy 104(3–4):290. doi:10.1016/j.ultramic.2005.05.005 CrossRefGoogle Scholar
  36. 36.
    Coetzee SH, Jordaan A, Mpuchane SF (2005) Microsc Res Tech 67(5):265. doi:10.1002/jemt.20209 CrossRefGoogle Scholar
  37. 37.
    Reed EJ, Bianchini LL, Viney C (2012) Biopolymers 97(6):397. doi:10.1002/bip.22005 CrossRefGoogle Scholar
  38. 38.
    Madsen B, Shao ZZ, Vollrath F (1999) Int J Biol Macromol 24(2–3):301CrossRefGoogle Scholar
  39. 39.
    Siegel S (1957) Am Stat 11(3):13Google Scholar
  40. 40.
    Hu X, Kaplan D, Cebe P (2007) Thermochim Acta 461(1–2):137. doi:10.1016/j.tca.2006.12.011 CrossRefGoogle Scholar
  41. 41.
    Guan J, Porter D, Vollrath F (2012) Polymer 53(13):2717. doi:10.1016/j.polymer.2012.04.017 CrossRefGoogle Scholar
  42. 42.
    Cameron RE, Donald AM (1994) J Microsc Oxf 173:227CrossRefGoogle Scholar
  43. 43.
    Chen F, Porter D, Vollrath F (2010) Phys Rev E 82(4):041911. doi:10.1103/PhysRevE.82.041911 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Beth Mortimer
    • 1
  • Daniel R. Drodge
    • 2
  • Kalin I. Dragnevski
    • 2
  • Clive R. Siviour
    • 2
  • Chris Holland
    • 1
    • 3
  1. 1.Department of ZoologyUniversity of OxfordOxfordUK
  2. 2.Department of Engineering ScienceUniversity of OxfordOxfordUK
  3. 3.Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations