Journal of Materials Science

, Volume 48, Issue 14, pp 5047–5054 | Cite as

Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method

  • Yuji Ohkubo
  • Yukihiro Hamaguchi
  • Satoshi Seino
  • Takashi Nakagawa
  • Satoru Kageyama
  • Junichiro Kugai
  • Hiroaki Nitani
  • Koji Ueno
  • Takao A. Yamamoto
Article

Abstract

We prepared carbon-supported PtCo bimetallic nanoparticles (PtCo/C) as electrode catalysts for the oxygen reduction reaction (ORR) at the cathodes in polymer electrolyte membrane fuel cells (PEFCs) by an electron-beam irradiation reduction method (EBIRM). An EBIRM allows nanoparticles to be easily prepared by the reduction of precursor ions in an aqueous solution irradiated with a high-energy electron beam. The structures of PtCo/C were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, and the techniques of X-ray diffraction and X-ray absorption near edge structure. It found for the first time that both PtCo alloy and Co oxide were prepared simultaneously on the carbon support by an EBIRM. The catalytic activity and durability of PtCo/C were evaluated by linear-sweep voltammetry and cyclic voltammetry, respectively. The addition of Co to Pt/C not only enhanced the catalytic activity for the ORR but also improved the catalytic durability. As the Co concentration increased, both behaviors became pronounced. These improvements are explained by the effects of both PtCo alloy and Co oxide. We demonstrated that an EBIRM can not only synthesize the alloy and oxide simultaneously on the carbon support but also mass-produce the electrode catalysts for PEFC cathodes.

Notes

Acknowledgements

We thank the staff of EBIS for their assistance with the electron-beam irradiation experiments. We also thank from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid No. 22241023) for partial financial support.

References

  1. 1.
    Prater KB (1994) J Power Sources 51:129CrossRefGoogle Scholar
  2. 2.
    Dhathathreyan KS, Sridhar P, Sasikumar G, Ghosh KK, Velayutham G, Rajalakshmi N, Subramaniam CK, Raja M, Ramya K (1999) Int J Hydrogen Energy 24:1107. doi: 10.1016/S0360-3199(98)00172-4 CrossRefGoogle Scholar
  3. 3.
    Steele BCH (2001) J Mater Sci 36:1053. doi: 10.1023/A:1004853019349 CrossRefGoogle Scholar
  4. 4.
    Brumfiel G (2003) Nature 422:104. doi: 10.1038/422104a CrossRefGoogle Scholar
  5. 5.
    Itsuki H, Fujiwara N, Komiya J, Fujiki H (2008) Int Gas Res Conf Proc 3:2518Google Scholar
  6. 6.
    Rabis A, Rodriguez P, Schmidt TJ (2012) ACS Catal 2:864. doi: 10.1021/cs3000864 CrossRefGoogle Scholar
  7. 7.
    Litster S, McLean G (2004) J Power Sources 130:61. doi: 10.1016/j.jpowsour.2003.12.055 CrossRefGoogle Scholar
  8. 8.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886. doi: 10.1021/jp047349j CrossRefGoogle Scholar
  9. 9.
    Takenaka S, Hirata A, Tanabe E, Matsune H, Kishida M (2010) J Catal 274:228. doi: 10.1016/j.jcat.2010.07.005 CrossRefGoogle Scholar
  10. 10.
    Takenaka S, Susuki N, Miyamoto H, Tanabe E, Matsune H, Kishida M (2011) J Catal 279:381. doi: 10.1016/j.jcat.2011.02.008 CrossRefGoogle Scholar
  11. 11.
    Antolini E (2004) J Appl Electrochem 34:563. doi: 10.1023/B:JACH.0000021923.67264.bb CrossRefGoogle Scholar
  12. 12.
    Antolini E, Perez J (2011) J Mater Sci 46:4435. doi: 10.1007/s10853-011-5499-3 CrossRefGoogle Scholar
  13. 13.
    Jiwei L, Jingxia Q, Miao Y, Chen J (2008) J Mater Sci 43:6285. doi: 10.1007/s10853-008-2905-6 CrossRefGoogle Scholar
  14. 14.
    Mukerjee S, Srinivasan S (1993) J Electroanal Chem 357:201. doi: 10.1016/0022-0728(93)80380-Z CrossRefGoogle Scholar
  15. 15.
    Mukerjee S, Srinivasan S (1995) J Electrochem Soc 142:1409. doi: 10.1149/1.2048590 CrossRefGoogle Scholar
  16. 16.
    Toda T, Igarashi H, Uchida H, Watanabe M (1999) J Electrochem Soc 146:3750. doi: 10.1149/1.1392544 CrossRefGoogle Scholar
  17. 17.
    Beard KD, Borrelli D, Cramer AM, Blom D, Van Zee JW, Monnier JR (2009) ACS Nano 3:353. doi: 10.1021/nn900214g CrossRefGoogle Scholar
  18. 18.
    Lee MH, Do JS (2009) J Power Sources 188:353. doi: 10.1016/j.jpowsour.2008.12.051 CrossRefGoogle Scholar
  19. 19.
    He Q, Mukerjee S (2010) Electrochim Acta 55:1709. doi: 10.1016/j.electacta.2009.10.054 CrossRefGoogle Scholar
  20. 20.
    Grolleaua C, Coutanceau C, Pierre F, Leger JM (2010) J Power Sources 195:1569. doi: 10.1016/j.jpowsour.2009.09.051 CrossRefGoogle Scholar
  21. 21.
    Oezaslan M, Hasché F, Strasser P (2012) J Electrochem Soc 159:B394. doi: 10.1149/2.075204jes CrossRefGoogle Scholar
  22. 22.
    Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Appl Catal A Gen 387:195. doi: 10.1016/j.apcata.2010.08.020 CrossRefGoogle Scholar
  23. 23.
    Yamamoto TA, Kageyama S, Seino S, Nitani H, Nakagawa T, Horioka R, Honda Y, Ueno K, Daimon H (2011) Appl Catal A Gen 396:68. doi: 10.1016/j.apcata.2011.01.037 CrossRefGoogle Scholar
  24. 24.
    Ohkubo Y, Shibata M, Kageyama S, Seino S, Nakagawa T, Kugai J, Yamamoto TA (2011) Mater Lett 65:2165. doi: 10.1016/j.matlet.2011.04.023 CrossRefGoogle Scholar
  25. 25.
    Kageyama S, Murakami A, Seino S, Nakagawa T, Daimon H, Yamamoto TA (2012) J Mater Res 27:1037. doi: 10.1557/jmr.2012.65 CrossRefGoogle Scholar
  26. 26.
    Belloni J (2006) Catal Today 113:141. doi: 10.1016/j.cattod.2005.11.082 CrossRefGoogle Scholar
  27. 27.
    Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguchi R, Okuda S, Yamamoto TA (2008) J Nanopart Res 10:1071. doi: 10.1007/s11051-007-9334-3 CrossRefGoogle Scholar
  28. 28.
    Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269CrossRefGoogle Scholar
  29. 29.
    Crabb EM, Marshall R, Thompsett D (2000) J Electrochem Soc 147:4440. doi: 10.1149/1.1394083 CrossRefGoogle Scholar
  30. 30.
    Ravel B, Newville M (2005) J Synchrotron Rad 12:537. doi: 10.1107/S0909049505012719 CrossRefGoogle Scholar
  31. 31.
    Newville M (2001) J Synchrotron Rad 8:96. doi: 10.1107/S0909049500016290 CrossRefGoogle Scholar
  32. 32.
    Watanabe M, Tryk DA, Wakisaka M, Yano H, Uchida H (2012) Electrochim Acta 84:187. doi: 10.1016/j.electacta.2012.04.035 CrossRefGoogle Scholar
  33. 33.
    Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ (2001) J Power Sources 102:172. doi: 10.1016/S0378-7753(01)00817-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yuji Ohkubo
    • 1
  • Yukihiro Hamaguchi
    • 1
  • Satoshi Seino
    • 1
  • Takashi Nakagawa
    • 1
  • Satoru Kageyama
    • 1
  • Junichiro Kugai
    • 1
  • Hiroaki Nitani
    • 2
  • Koji Ueno
    • 3
  • Takao A. Yamamoto
    • 1
  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
  3. 3.Japan Electron Beam Irradiation Service LtdIzumiohtsuJapan

Personalised recommendations