Journal of Materials Science

, Volume 48, Issue 14, pp 5036–5046 | Cite as

Early anisotropic expansion of aluminium foam precursors

  • J. Lázaro
  • E. SolórzanoEmail author
  • J. A. de Saja
  • M. A. Rodríguez-Pérez


This work reports a detailed study on the early expansion (before the melting point) of powder metallurgical (PM) aluminium foam precursors and its influence on the intrinsic anisotropy existing in the final cellular structure of PM foams. Hot uniaxial compressed tablets, rectangular and cylindrical extruded profiles and thixocast PM precursors have been considered to evaluate the effect of the processing technique on the early expansion behaviour. An optical device has been used to register, in situ, the dissimilar expansion of the precursors in the three spatial directions. Cellular morphology has been examined by X-ray microtomography and correlated to expansion behaviour. Results demonstrated a high influence of the processing technique and its correlation with powder debonding in preferential directions which, in combination with the early TiH2 decomposition, generates elongated cracks and causes an anisotropic expansion at early foaming stages. As a consequence, a remaining structural anisotropy is found in the final solid cellular material, even at high porosities. A discussion of the possible factors affecting this early expansion behaviour, complemented with possible solutions to minimize it, is provided in the paper.


Foam Linear Expansion Aluminium Foam Extrusion Direction Area Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Alulight Company in Austria and the IFAM Bremen institute (Dr. Weise) which supplied the materials. In addition, the financial support of Spanish Ministry of Science and Education (FPU Grant Ref-AP-2007-03318, JCI-2011-09775, MAT 2009-14001-C02-01, MAT 2012-34901) and the Junta of Castille and Leon (VA174A12-2) is also acknowledged.


  1. 1.
    Ashby MF (2000) Metal foams: a design guide. Butterworth–Heinemann, OxfordGoogle Scholar
  2. 2.
    Banhart J (2000) J Met 52:22Google Scholar
  3. 3.
    Yu CJ, Eifert HH, Banhart J, Baumeister J (1998) Mater Res Innov 2:181CrossRefGoogle Scholar
  4. 4.
    Banhart J (2001) Prog Mater Sci 46:559CrossRefGoogle Scholar
  5. 5.
    Ito K, Kobayashi H (2006) Adv Eng Mater 8:828CrossRefGoogle Scholar
  6. 6.
    Baumgärtner F, Duarte I, Banhart J (2000) Adv Eng Mater 2:168CrossRefGoogle Scholar
  7. 7.
    Banhart J, Wolfgand S (2008) Adv Eng Mater 10:793CrossRefGoogle Scholar
  8. 8.
    Banhart J, Baumeister J (1998) J Mater Sci 33:1431. doi: 10.1023/A:1004383222228 CrossRefGoogle Scholar
  9. 9.
    McCullough KYG, Fleck NA, Ashby MF (1999) Acta Mater 47:2331CrossRefGoogle Scholar
  10. 10.
    Motz C, Rippan R (2002) Acta Mater 50:2013CrossRefGoogle Scholar
  11. 11.
    Nosko M, Simancik F, Florek R (2010) Mater Sci Eng A 527:5900CrossRefGoogle Scholar
  12. 12.
    Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties. Pergamon Press, OxfordGoogle Scholar
  13. 13.
    Duarte I, Banhart J (2000) Acta Mater 48:2349CrossRefGoogle Scholar
  14. 14.
    Matijasevic B, Banhart J (2006) Scripta Mater 54:503CrossRefGoogle Scholar
  15. 15.
    Kennedy AR (2002) J Mater Sci Lett 21:1555CrossRefGoogle Scholar
  16. 16.
    Helfen L, Baumbach T, Stanzick H, Banhart J, Elmoutaouakkil A, Cloetens P (2002) Adv Eng Mater 4:808CrossRefGoogle Scholar
  17. 17.
    Helfen L, Baumbach T, Pernot P, Cloetens P, Stanzick H, Schladitz K, Banhart J (2005) App Phys Lett 86:231907CrossRefGoogle Scholar
  18. 18.
    Körner C, Berger F, Arnold M, Stadelmann C, Singer RF (2000) Mater Sci Technol 16:781CrossRefGoogle Scholar
  19. 19.
    Youn SW, Kang CG (2004) Metall Mater Trans B 35:769CrossRefGoogle Scholar
  20. 20.
    Banhart J, Stanzick H, Helfen L, Baumbach T (2001) App Phys Lett 78:1152CrossRefGoogle Scholar
  21. 21.
    Garcia-Moreno F, Fromme M, Banhart J (2004) Adv Eng Mater 6:416CrossRefGoogle Scholar
  22. 22.
    Garcia-Moreno F, Babcsan N, Banhart J (2005) Colloids Surf A 263:290CrossRefGoogle Scholar
  23. 23.
    Brunkel O, Odenbach S (2006) J Phys Condens Matter 18:6493CrossRefGoogle Scholar
  24. 24.
    Stanzick H, Danilkin S, Klenke J, Banhart J (2002) Appl Phys A 74:1118CrossRefGoogle Scholar
  25. 25.
    Mukherjee M, Garcia-Moreno F, Banhart J (2010) Acta Mater 58:6358CrossRefGoogle Scholar
  26. 26.
    Solórzano E, Antunes M, Saiz-Arroyo C, Rodriguez-Pérez MA, Velasco JI, de Saja JA (2012) J Appl Polym Sci 125:1059CrossRefGoogle Scholar
  27. 27.
    Weise J, Stanzick H, Banhart J (2003) In: Banhart J, Fleck NA, Mortensen A (eds) Cellular metals: manufacture, properties and applications. MIT Publishing, Berlin, p 169Google Scholar
  28. 28.
    Abramoff MD, Magelhaes PJ, Ram SJ (2004) Bioph Int 11:36Google Scholar
  29. 29.
    Olurin OB, Arnold M, Körner C, Singer RF (2002) Mater Sci Eng A 328:334CrossRefGoogle Scholar
  30. 30.
    Jimenez C, Garcia-Moreno F, Mukherjee M, Goerke O, Banhart J (2009) Scripta Mater 61:552CrossRefGoogle Scholar
  31. 31.
    Wafers K, Misra C (1987) Alcoa Tech Paper 19:37Google Scholar
  32. 32.
    Estrada JL, Duszczyk J, Korevaar BM (1991) J Mater Sci 26:1431. doi: 10.1007/BF00544650 CrossRefGoogle Scholar
  33. 33.
    Shearouse J, Mikucki B (1994) Mater Manuf 103:542Google Scholar
  34. 34.
    Garcia-Moreno F, Banhart J (2007) Colloids Surf A 309:264CrossRefGoogle Scholar
  35. 35.
    Mukherjee M, Garcia-Moreno F, Jimenez C, Banhart J (2010) Adv Eng Mater 12:472CrossRefGoogle Scholar
  36. 36.
    Gergely V, Clyne B (2000) Adv Eng Mater 2:175CrossRefGoogle Scholar
  37. 37.
    Kennedy AR (2002) Scripta Mater 47:763CrossRefGoogle Scholar
  38. 38.
    Matijasevic-Lux B, Banhart J, Fiechter S, Görke O, Wanderka N (2006) Acta Mater 54:1887CrossRefGoogle Scholar
  39. 39.
    Gergely V, Curran DC, Clyne TW (2003) Compos Sci Technol 63:2301CrossRefGoogle Scholar
  40. 40.
    Haesche M, Lehmhus D, Weise J, Wichmann M, Mocellin ICM (2010) J Mater Sci Technol 26:845CrossRefGoogle Scholar
  41. 41.
    Lehmhus D, Busse M (2004) Adv Eng Mater 6:391CrossRefGoogle Scholar
  42. 42.
    Helwig HM, Garcia-Moreno F, Banhart J (2011) J Mater Sci 46:5227. doi: 10.1007/s10853-011-5460-5 CrossRefGoogle Scholar
  43. 43.
    Lehmhus D (2010) Adv Eng Mater 12:465CrossRefGoogle Scholar
  44. 44.
    Jimenez C, Garcia-Moreno F, Banhart J, Zehl G (2008) In: Lefebvre LP, Banhart J, Dunand D (eds) Porous metals and metallic foams. DEStech Pub, Lancaster, p 59Google Scholar
  45. 45.
    Asavavisithchai S, Kennedy AR (2006) Adv Eng Mater 8:810CrossRefGoogle Scholar
  46. 46.
    Helwig HM, Hiller S, Garcia-Moreno F, Banhart J (2009) Metall Mater Trans B 40:755CrossRefGoogle Scholar
  47. 47.
    Jimenez C, Garcia-Moreno F, Pfretzschner B, Klaus M, Wollgarten M, Zizak L, Schumacher G, Tovar M, Banhart J (2011) Acta Mater 59:6318CrossRefGoogle Scholar
  48. 48.
    Illekova E, Harnuskova J, Florek R, Simancik F, Matko I, Svec P (2011) J Therm Anal Calorim 105:583CrossRefGoogle Scholar
  49. 49.
    Haesche M, Weise J, García-Moreno F, Banhart J (2008) Mat Sci Eng A 480:283CrossRefGoogle Scholar
  50. 50.
    Bonaccorsi L, Proverbio E (2006) Adv Eng Mater 8:864CrossRefGoogle Scholar
  51. 51.
    Asavavisithchai S, Kennedy AR (2006) Scripta Mater 54:1331CrossRefGoogle Scholar
  52. 52.
    Aguirre-Perales LY, Jung IH, Drew RAL (2012) Acta Mater 60:759CrossRefGoogle Scholar
  53. 53.
    Ibrahim A, Korner C, Singer RF (2008) Adv Eng Mater 19:845CrossRefGoogle Scholar
  54. 54.
    Proa-Flores PM, Mendoza-Suarez G, Drew RAL (2012) J Mater Sci 47:455. doi: 10.1007/s10853-011-5820-1 CrossRefGoogle Scholar
  55. 55.
    Frei J, Gergely V, Mortensen A, Clyne TW (2002) Adv Eng Mater 4:749CrossRefGoogle Scholar
  56. 56.
    Suzuki R, Kitazono K (2010) J Jpn Inst Met 74:314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Lázaro
    • 1
  • E. Solórzano
    • 1
    Email author
  • J. A. de Saja
    • 1
  • M. A. Rodríguez-Pérez
    • 1
  1. 1.Cellular Materials Laboratory (CellMat), Condensed Matter Physics DepartmentFaculty of Science, University of ValladolidValladolidSpain

Personalised recommendations