Journal of Materials Science

, Volume 48, Issue 14, pp 5029–5035 | Cite as

Isothermal solid–liquid transitions in the (Ni,B)/ZrB2 system as revealed by sessile drop experiments

  • C. ArtiniEmail author
  • M. L. Muolo
  • A. Passerone
  • G. Cacciamani
  • F. Valenza


In the framework of joining processes of ultrahigh temperature ceramics (UHTCs), sessile drop experiments were performed in the Ni–B/ZrB2 system in the range 1110° ≤ T ≤ 1200 °C. They show that, at temperatures between 1110 and 1150 °C, isothermal solid–liquid transitions occur in a sequence; while in fact at T ≥ 1200 °C, the drop melts without any further phase transition, at lower temperatures, complete melting is followed by a solidification stage and final remelting. This complex behavior, which can be very relevant when utilizing Ni–B alloys for brazing processes (e.g., by the transient liquid phase bonding technique), is successfully interpreted on the basis of the complete B–Ni–Zr phase diagram newly computed by CALPHAD: Isothermal sections, calculated between 1110 and 1150 °C, show that the composition of the drop enters, crosses, and leaves the primary solidification region of the Zr2Ni21B6 ternary compound. The use of thermodynamic modeling for the explanation of experimental data sets a link between wetting and joining experiments and phase diagrams assessment.


Contact Angle Isothermal Section Ternary Compound Drop Height Liquid Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. P. Manfrinetti (DCCI, the University of Genoa) and Mr. A. Risplendente (Department of Earth Sciences, the University of Milan) are acknowledged for their help in preparing alloys and performing WDS analyses. The authors wish to thank Mr. Francesco Mocellin (CNR-IENI) for his technical support. This work was part of the Project “JoinHT” funded by the “CARIPLO Funding Scheme—2010.”

Supplementary material

Supplementary material 1 (MPG 2222 kb)


  1. 1.
    Fernie J, Drew R, Knowles K (2009) Int Mater Rev 54:283CrossRefGoogle Scholar
  2. 2.
    Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) J Am Ceram Soc 90:1347CrossRefGoogle Scholar
  3. 3.
    Munro RG (2000) J Res NIST 105:709CrossRefGoogle Scholar
  4. 4.
    Opeka MM, Talmy IG, Zaykoski JA (2004) J Mater Sci 39:1347. doi: 10.1023/B:JMSC.0000041686.21788.77 CrossRefGoogle Scholar
  5. 5.
    Van Wie DM, Drewry DG Jr, King DE, Hudson CM (2004) J Mater Sci 39:5915. doi: 10.1023/B:JMSC.0000041688.68135.8b CrossRefGoogle Scholar
  6. 6.
    Monteverde F, Bellosi A, Scatteia L (2008) Mater Sci Eng A 485:415CrossRefGoogle Scholar
  7. 7.
    Saito N, Ikeda H, Yamaoka Y, Glaeser AM, Nakashima K (2012) J Mater Sci 47:8454. doi: 10.1007/s10853-012-6778-3 CrossRefGoogle Scholar
  8. 8.
    Aizenshtein M, Frage N, Froumin N, Shapiro-Tsoref E, Dariel MP (2006) J Mater Sci 41:5185. doi: 10.1007/s10853-006-0436-6 CrossRefGoogle Scholar
  9. 9.
    Singh M, Asthana R (2010) J Mater Sci 45:4308. doi: 10.1007/s10853-010-4510-8 CrossRefGoogle Scholar
  10. 10.
    Passerone A, Muolo ML, Novakovic R, Passerone D (2007) J Eur Ceram Soc 27:3277CrossRefGoogle Scholar
  11. 11.
    Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Scripta Mater 48:191CrossRefGoogle Scholar
  12. 12.
    Valenza F, Artini C, Passerone A, Muolo ML (2012) J Mater Sci 47:8439. doi: 10.1007/s10853-012-6790-7 CrossRefGoogle Scholar
  13. 13.
    Valenza F, Muolo ML, Passerone A, Cacciamani G, Artini C (2012) J Mater Eng Perform 21:660CrossRefGoogle Scholar
  14. 14.
    Passerone A, Muolo ML, Valenza F, Kaufman L (2010) CALPHAD 34:6CrossRefGoogle Scholar
  15. 15.
    Passerone A, Muolo ML, Valenza F, Monteverde F, Sobczak N (2009) Acta Mater 57:356CrossRefGoogle Scholar
  16. 16.
    Yuan B, Zhang GJ (2011) Scripta Mater 64:17CrossRefGoogle Scholar
  17. 17.
    Cacciamani G, Riani P, Valenza F (2011) CALPHAD 35:601CrossRefGoogle Scholar
  18. 18.
    Kaufman L, Cacciamani G, Muolo ML, Valenza F, Passerone A (2010) CALPHAD 34:2CrossRefGoogle Scholar
  19. 19.
    Gumeniuk R, Prots Y, Schnelle W, Leithe-Jasper A (2008) Z Kristallogr 223:327Google Scholar
  20. 20.
    Lugscheider E, Reimann H, Pankert P (1982) Metallwissenschaft und Technik 36:247Google Scholar
  21. 21.
    Monteverde F, Guicciardi S, Bellosi A (2003) Mater Sci Eng A 346:310CrossRefGoogle Scholar
  22. 22.
    Monteverde F, Bellosi A (2002) Scripta Mater 46:223CrossRefGoogle Scholar
  23. 23.
    Zamora V, Ortiz AL, Guiberteau F, Nygren M (2012) J Eur Ceram Soc 32:2529CrossRefGoogle Scholar
  24. 24.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon Materials Series. Elsevier, OxfordGoogle Scholar
  25. 25.
    Valenza F, Muolo ML, Passerone A (2010) J Mater Sci 45:2071. doi: 10.1007/s10853-009-3801-4 CrossRefGoogle Scholar
  26. 26.
    Liggieri L, Passerone A (1989) High Temp Technol 7:82Google Scholar
  27. 27.
    Ganglberger E, Nowotny H, Benesovsky F (1965) Monatsh Chem 96:1144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • C. Artini
    • 1
    Email author
  • M. L. Muolo
    • 1
  • A. Passerone
    • 1
  • G. Cacciamani
    • 2
  • F. Valenza
    • 1
  1. 1.National Research Council-Institute for Energetics and Interphases (CNR-IENI)GenoaItaly
  2. 2.Department of Chemistry and Industrial Chemistry (DCCI)University of GenovaGenoaItaly

Personalised recommendations