Journal of Materials Science

, Volume 48, Issue 14, pp 4965–4972 | Cite as

Effect of ternary solute interaction on interfacial segregation and grain boundary embrittlement

  • Pavel Lejček


Effect of ternary solute interaction on interfacial segregation and grain boundary embrittlement in an MIJ system is modeled on the basis of combined Guttmann and Rice–Wang approaches. It is clearly shown that repulsive IJ interaction strengthens interfacial segregation of the impurity I, suppresses segregation of the solute J, and substantially enhances intergranular embrittlement. Attractive interaction exhibits an opposite effect. Generally, the effect of the ternary interaction is weaker than that of the binary one. Although there are only rare experimental data in this respect, their comparison to model calculations shows a very good agreement.


Grain Boundary Attractive Interaction Boundary Concentration Binary Interaction Surface Segregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of the Czech Science Foundation (grant P108/12/0144) and Ministry of Education, Youth and Sports of the Czech Republic (grants CZ.1.05/2.1.00/01.0040 and LM2011026) is gratefully acknowledged.


  1. 1.
    Hondros ED, Seah MP, Hofmann S, Lejček P (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th edn. North Holland, Amsterdam, p 1201CrossRefGoogle Scholar
  2. 2.
    Grabke HJ (1999) In: Briant CL (ed) Impurities in engineering materials. Marcel Dekker, New York, p 143Google Scholar
  3. 3.
    Rice JR, Wang JS (1989) Mater Sci Eng A 107:23CrossRefGoogle Scholar
  4. 4.
    Lejček P (2010) Grain boundary segregation in metals. Springer, BerlinGoogle Scholar
  5. 5.
    Lejček P (2013) J Mater Sci 48:2574. doi: 10.1007/s10853-012-7048-0 CrossRefGoogle Scholar
  6. 6.
    Guttmann M, McLean D (1979) In: Johnson WC, Blakely JM (eds) Interfacial segregation. ASM, Metals Park, p 261Google Scholar
  7. 7.
    Lejček P, Hofmann S (2008) Crit Rev Sol State Mater Sci 33:133CrossRefGoogle Scholar
  8. 8.
    Všianská M, Šob M (2011) Prog Mater Sci 56:817CrossRefGoogle Scholar
  9. 9.
    Yamaguchi M (2011) Metall Mater Trans A 42:319CrossRefGoogle Scholar
  10. 10.
    Grabke HJ (1986) Steel Res 57:178Google Scholar
  11. 11.
    Janovec J, Jenko M, Lejček P, Pokluda J (2007) Mater Sci Eng A 462:441CrossRefGoogle Scholar
  12. 12.
    Lejček P, Pokluda J, Šandera P, Horníková J, Jenko M (2012) Surf Sci 606:258CrossRefGoogle Scholar
  13. 13.
    Lejček P, Hofmann S (2004) Surf Interface Anal 36:938CrossRefGoogle Scholar
  14. 14.
    Lejček P, Hofmann S, Krajnikov A (1997) Mater Sci Eng A 234–236:283Google Scholar
  15. 15.
    Erhart J, Grabke HJ (1981) Metal Sci 15:401CrossRefGoogle Scholar
  16. 16.
    Grabke HJ (1989) ISIJ Int 29:529CrossRefGoogle Scholar
  17. 17.
    Guttmann M (1995) J Phys IV 5:C7Google Scholar
  18. 18.
    Ustinovshikov YuI (1984) Metal Sci 18:545CrossRefGoogle Scholar
  19. 19.
    Grabke HJ (1987) In: Latanision RM, Jones RH (eds) Chemistry and physics of fracture. Nijhoff, Dordrecht, p 338Google Scholar
  20. 20.
    Seah MP, Lea C (1975) Philos Mag 31:77CrossRefGoogle Scholar
  21. 21.
    Seah MP, Lea C (1975) Philos Mag 31:627CrossRefGoogle Scholar
  22. 22.
    Lejček P (2004) J Alloys Compd 378:85CrossRefGoogle Scholar
  23. 23.
    Guttmann M (1983) In: Latanision RM, Pickens JR (eds) Atomistics of fracture. Plenum Press, New York, p 465CrossRefGoogle Scholar
  24. 24.
    Briant CL (1985) Acta Metall 33:1241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Physics, AS CRPraha 8Czech Republic

Personalised recommendations