Journal of Materials Science

, Volume 48, Issue 13, pp 4689–4697 | Cite as

Microstructure and mechanical properties of high purity nanostructured titanium processed by high pressure torsion at temperatures 300 and 77 K

  • A. V. Podolskiy
  • C. Mangler
  • E. Schafler
  • E. D. Tabachnikova
  • M. J. Zehetbauer
Nanostructured Materials


Several structural states of nanostructured high purity Ti with average grain size down to 100 nm were achieved by high pressure torsion (HPT) at temperatures 300 and 77 K. As a result of HPT processing, changes of crystallographic texture, of grain and crystallite size, and of the dislocation density have been measured and analyzed. Mechanical properties of the nanostructured Ti were studied by uniaxial compression at temperatures 300, 77, and 4.2 K. The texture components indicate simple shear deformation arising from HPT. With subsequent compression, the yield strength appears to be governed by the grain size rather than by crystallite size, dislocation density, and/or impurity content. Considerable changes of texture were observed after low temperature compressive deformation indicating that twinning markedly contributes to plasticity.


Slip System Pole Figure Severe Plastic Deformation Cryogenic Temperature High Pressure Torsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for financial support within the Scientific–Technical Cooperation Project Austria–Ukraine UA 16/2011 (M/185-2012) and some support by the Austrian Science Fund FWF within project S 10403. The authors are grateful to V.A. Moskalenko for helpful discussions.


  1. 1.
    Zehetbauer MJ, Zhu YT (eds) (2009) Bulk nanostructured materials. VCH-Wiley, WeinheimGoogle Scholar
  2. 2.
    Valiev RZ, Aleksandrov IV (2007) Bulk nanostructured metallic materials: production, structure and properties. Akademkniga, Moskow (in Russian)Google Scholar
  3. 3.
    Zwicker U (1974) Titan und Titanlegierungen. Springer-Verlag, BerlinGoogle Scholar
  4. 4.
    Kovaleva VN, Moskalenko VA, Natsik VD (1994) Philos Mag A70:423–438Google Scholar
  5. 5.
    Moskalenko VA, Natsik VD, Kovaleva VN (2005) Low Temp Phys 31:907–914CrossRefGoogle Scholar
  6. 6.
    Edalati K, Matsubara E, Horita Z (2009) Metall Mater Trans A 40:2079–2086CrossRefGoogle Scholar
  7. 7.
    Podolskiy AV, Tabachnikova ED, Bonarski B, Setman D, Mangler C, Schafler E, Zehetbauer MJ (2013) Mech Mater, submitted for publicationGoogle Scholar
  8. 8.
    Van Houtte P (1991) Textures Microstruct 13:199–212CrossRefGoogle Scholar
  9. 9.
    Pawlik K, Ozga P (1999) LaboTex: the texture analysis software, Gittinger Arbeiten zur Geologie und Paläontologie, SB4Google Scholar
  10. 10.
    Ribarik G, Ungar T, Gubicza J (2001) J Appl Crystallogr 34:669–676CrossRefGoogle Scholar
  11. 11.
    Ribarik G, Gubicza J, Ungar T (2004) J Mater Sci Eng A 387–389:343–347CrossRefGoogle Scholar
  12. 12.
    Kerber MB, Zehetbauer MJ, Schafler E, Spieckermann FC, Bernstorff S, Ungar T (2011) JOM 63:61–70CrossRefGoogle Scholar
  13. 13.
    Máthis K, Nyilas K, Axt A, Dragomir-Cernatescu I, Ungár T, Lukáč P (2004) Acta Mater 52:2889–2894CrossRefGoogle Scholar
  14. 14.
    Dragomir IC, Ungár T (2002) J Appl Cryst 35:556–564CrossRefGoogle Scholar
  15. 15.
    Wang YM, Ma E (2004) Acta Mater 52:1699–1709CrossRefGoogle Scholar
  16. 16.
    Moskalenko VA, Smirnov AR, Moskalenko AV (2009) Low Temp Phys 35:1160–1164CrossRefGoogle Scholar
  17. 17.
    Beausir B, Toth LS, Neale KW (2007) Acta Mater 55:2695–2705CrossRefGoogle Scholar
  18. 18.
    Alexandrov IV, Dubravina AA, Kilmametov AR, Kazykhanov VU, Valiev RZ (2003) Met Mater Int 9:151–156CrossRefGoogle Scholar
  19. 19.
    Churchman AT (1954) Proc R Soc Lond A226:216–226Google Scholar
  20. 20.
    Schafler E (2011) Scr Mater 64:13–32CrossRefGoogle Scholar
  21. 21.
    Schafler E (2010) Scr Mater 62:423–426CrossRefGoogle Scholar
  22. 22.
    Reed-Hill RE (1964) In: Reed-Hill RE, Hirth JP, Rogers HC (eds) Deformation twinning vol 25. TMS, Warrendale, pp 295–320Google Scholar
  23. 23.
    Valiev RZ, Sergueeva AV, Mukherjee AK (2003) Scr Mater 49:669–674CrossRefGoogle Scholar
  24. 24.
    Islamgaliev RK, Kazyhanov VU, Shestakova LO, Sharafutdinov AV, Valiev RZ (2008) Mater Sci Eng A 493:190–194CrossRefGoogle Scholar
  25. 25.
    Rusakova AV, Lubenets SV, Fomenko LS, Moskalenko VA (2012) Low Temp Phys 38:980–988CrossRefGoogle Scholar
  26. 26.
    Tabachnikova ED, Bengus VZ, Podolskiy AV, Smirnov SN, Gunderov DV, Valiev RZ (2006) Mater Sci Forum 503–504:633–638CrossRefGoogle Scholar
  27. 27.
    Tabachnikova ED, Podolskiy AV, Smirnov SN, Psaruk IA, Bengus VZ, Li H, Li L, Chu H, Liao PK (2012) Low Temp Phys 38:239–247CrossRefGoogle Scholar
  28. 28.
    Song SG, Gray GT III (1995) Acta Metall Mater 43:2339–2350CrossRefGoogle Scholar
  29. 29.
    Podolskiy AV, Smirnov SN, Tabachnikova ED, Bengus VZ, Velikodny AN, Tikhonovsky MA, Bonarski B, Mangler C, Zehetbauer MJ (2011) Low Temp Phys 37:609–617CrossRefGoogle Scholar
  30. 30.
    Dragomir IC, Ungar T (2002) J Appl Cryst 35:556–564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. V. Podolskiy
    • 1
    • 2
  • C. Mangler
    • 2
  • E. Schafler
    • 2
  • E. D. Tabachnikova
    • 1
  • M. J. Zehetbauer
    • 2
  1. 1.B. Verkin Institute for Low Temperature Physics & EngineeringKharkovUkraine
  2. 2.Physics of Nanostructured Materials, Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations