Journal of Materials Science

, Volume 48, Issue 12, pp 4396–4407 | Cite as

Diffusional effects for the oxidation of SiC powders in thermogravimetric analysis experiments

  • Omid Ebrahimpour
  • Jamal Chaouki
  • Charles Dubois


The oxidation behavior of SiC powders was studied using a thermogravimetric analysis (TGA). The effects of temperature (910–1010 °C), particle size (120 nm, 1.5 μm), and the initial reactant mass on the oxidation behavior of SiC were investigated. Kinetics analysis showed that intra-particle diffusion and chemical reaction controls the oxidation rate. Moreover, a new kinetics model was proposed to describe the oxidation rate of where all diffusion steps (bulk, inter- and intra-diffusion) and the chemical reaction may affect the overall reaction rate. The model was validated through a comparison with the experimental results obtained from the oxidation of SiC powders in TGA experiments. It was found that during the experiments, inter diffusion must also be taken account to describe adequately the oxidation rate. Numerical analysis indicated that inter-particle diffusion has a significant effect on the oxidation rate, especially for larger system.


Oxidation Rate Gaseous Reactant Oxidation Behavior Bulk Diffusion Passive Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


Gas reactant


Bed surface area


Stoichiometric coefficient


Concentration of gas reactant


Concentration of gas reactant at the surface of the bed


Molar density of SiC


Total molar density of gas


Pre-exponential factor in Arrhenius equation in Eq. 24

\( D_{{{\text{air}} - {\text{CO}}_{ 2} }}^{{}} \)

Diffusion coefficient of the reactant in gas in the bulk system

\( D_{\text{e}}^{\text{s}} \)

Effective diffusivity of the reactant gaseous in solid


Pre-exponential factor in Arrhenius equation in Eq. 25


Bed height


Crucible height


Initial sample weight

\( N_{\text{A}}^{\prime } \)

Molar flux of gaseous reactant inside the powder


Molar balance of the gaseous reactant in the crucible


Radius of the crucible


Radius of unreacted shell of powder


Initial powder radius


Total surface area of the powder per unit volume





\( \tau_{\text{S}} \)

Time for a complete reaction of the particles as defined in Eq. 4

\( \tau_{\text{r}} \)

Time to complete oxidation of the particles as defined in Eq. 4


Time to complete oxidation of the particles as defined in Eq. 10


Time to complete oxidation of the particles as defined in Eq. 27


Fractional conversion as defined in Eq. 5


Thickness of the oxide layer


Mole fraction of gas A in crucible


Mole fraction of gas A at bulk


Mole fraction of gas A at the surface of the bed

\( X_{\text{A,Loc}}^{\prime } \)

Local fractional conversion defined by Eq. 22


Dimensionless of bed height in the crucible (z/L)


Dimensionless of moving boundary in the bed

\( \Upomega \)

Function defined by Eq. 19


Function defined by Eq. 18


Function defined by Eq. 27

\( \Upphi \)

Function defined by Eq. B1






  1. 1.
    Jacobson NS (1993) J Am Ceram Soc 76(1):3–28CrossRefGoogle Scholar
  2. 2.
    Vaughn WL, Maahs HG (1990) J Am Ceram Soc 73(6):1540–1543CrossRefGoogle Scholar
  3. 3.
    Jacobson NS, Myers DL (2011) Oxid Met 75(1–2):1–25. doi: 10.1007/s11085-010-9216-4 CrossRefGoogle Scholar
  4. 4.
    Opila E (1995) J Am Ceram Soc 78(4):1107–1110CrossRefGoogle Scholar
  5. 5.
    Zheng Z, Tressler RE, Spear KE (1992) Corros Sci 33(4):545–556CrossRefGoogle Scholar
  6. 6.
    Ramberg CE, Cruciani G, Spear KE, Tressler RE, Ramberg CF (1996) J Am Ceram Soc 79(11):2897–2911CrossRefGoogle Scholar
  7. 7.
    Jia QL, Zhang HJ, Li SP, Jia XL (2007) Ceram Int 33(2):309–313. doi: 10.1016/j.ceramint.2005.09.014 CrossRefGoogle Scholar
  8. 8.
    Tortorelli PF, More KL (2003) J Am Ceram Soc 86(8):1249–1255CrossRefGoogle Scholar
  9. 9.
    Deal BE, Grove AS (1965) J Appl Phys 36(12):3770CrossRefGoogle Scholar
  10. 10.
    Chou KC (2006) J Am Ceram Soc 89(5):1568–1576. doi: 10.1111/j.1551-2916.2006.00959.x CrossRefGoogle Scholar
  11. 11.
    Hou XM, Chou KC (2008) J Am Ceram Soc 91(10):3315–3319. doi: 10.1111/j.1551-2916.2008.02631.x CrossRefGoogle Scholar
  12. 12.
    He JY, Ponton CB (2008) J Mater Sci 43(12):4031. doi: 10.1007/s10853-007-2332-0 CrossRefGoogle Scholar
  13. 13.
    Ollero P, Serrera A, Arjona R, Alcantarilla S (2002) Fuel 81(15):1989–2000CrossRefGoogle Scholar
  14. 14.
    Gomez-Barea A, Ollero P, Arjona R (2005) Fuel 84(12–13):1695–1704. doi: 10.1016/j.fuel.2005.02.003 Google Scholar
  15. 15.
    Zouaoui N, Brilhac JF, Mechati F, Jeguirim M, Djellouli B, Gilot P (2010) J Therm Anal Calorim 102(3):837–849. doi: 10.1007/s10973-010-0831-8 CrossRefGoogle Scholar
  16. 16.
    Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New YorkGoogle Scholar
  17. 17.
    Lanfrey PY, Kuzeljevic ZV, Dudukovic MP (2010) Chem Eng Sci 65(5):1891–1896. doi: 10.1016/j.ces.2009.11.011 CrossRefGoogle Scholar
  18. 18.
    Niksiar A, Rahimi A (2009) Powder Technol 193(1):101–109. doi: 10.1016/j.powtec.2009.02.012 CrossRefGoogle Scholar
  19. 19.
    Batarseh KI, Swaney GP, Stiller AH (1989) AIChE J 35(4):625–634CrossRefGoogle Scholar
  20. 20.
    Crank J (1975) The mathematics of diffusion. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Hou XM, Chou KC (2008) Corros Sci 50(8):2367–2371. doi: 10.1016/j.corsci.2008.06.006 CrossRefGoogle Scholar
  22. 22.
    Narushima T, Goto T, Hirai T (1989) J Am Ceram Soc 72(8):1386–1390CrossRefGoogle Scholar
  23. 23.
    Shimoo T, Toyoda F, Okamura K (2000) J Mater Sci 35(13):3301. doi: 10.1023/A:1004883607913 CrossRefGoogle Scholar
  24. 24.
    Das D, Farjas J, Roura P (2004) J Am Ceram Soc 87(7):1301–1305CrossRefGoogle Scholar
  25. 25.
    Song Y, Dhar S, Feldman LC, Chung G, Williams JR (2004) J Appl Phys 95(9):4953–4957. doi: 10.1063/1.1690097 CrossRefGoogle Scholar
  26. 26.
    Zheng Z, Tressler RE, Spear KE (1990) J Electrochem Soc 137(3):854–858CrossRefGoogle Scholar
  27. 27.
    Wittberg TN, SenWang P, Hsu SM (2003) Surf Interface Anal 35(10):773–778. doi: 10.1002/Sia.1598 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Omid Ebrahimpour
    • 1
  • Jamal Chaouki
    • 1
  • Charles Dubois
    • 1
  1. 1.Department of Chemical EngineeringÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations