Advertisement

Journal of Materials Science

, Volume 48, Issue 15, pp 5103–5112 | Cite as

Young’s modulus and volume porosity relationships for additive manufacturing applications

  • J. A. ChorenEmail author
  • S. M. Heinrich
  • M. B. Silver-Thorn
Review

Abstract

Recent advancements in additive manufacturing (or rapid prototyping) technologies allow the fabrication of end-use components with defined porous structures. For example, one area of particular interest is the potential to modify the flexibility (bending stiffness) of orthopedic implants through the use of engineered porosity (i.e., design and placement of pores) and subsequent fabrication of the implant using additive manufacturing processes. However, applications of engineered porosity require the ability to accurately predict mechanical properties from knowledge or characterization of the pore structure and the existence of robust equations characterizing the property–porosity relationships. As Young’s modulus can be altered by variations in pore shape as well as pore distribution, numerous semi-analytical and theoretical relationships have been proposed to describe the dependence of mechanical properties on porosity. However, the utility and physical meaning of many of these relationships is often unclear as most theoretical models are based on some idealized physical microstructure, and the resulting correlations often cannot be applied to real materials and practical applications. This review summarizes the evolution and development of relationships for the effective Young’s modulus of a porous material and concludes that verifiable equations yielding consistently reproducible results tied to specific pore structures do not yet exist. Further research is needed to develop and validate predictive equations for the effective Young’s modulus over a volume porosity range of 20–50 %, the range of interest over which existing equations, whether based on effective medium theories or empirical results, demonstrate the largest disparity and offers the greatest opportunity for beneficial modification of bending stiffness in orthopedic applications using currently available additive manufacturing techniques.

Keywords

Additive Manufacturing Porous Body Pore Geometry Spherical Void Porosity Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wang L, Tseng KK (2003) J Mater Sci 38:3019. doi: 10.1023/A:1024736105732 CrossRefGoogle Scholar
  2. 2.
    Ramakrishnan N, Arunachalam VS (1993) J Am Ceram Soc 76(11):2745CrossRefGoogle Scholar
  3. 3.
    O’Kelly KU, Carr AJ, McCormack BAO (2003) J Mater Sci Mater Med 14:379CrossRefGoogle Scholar
  4. 4.
    Herakovich CT, Baxter SC (1999) J Mater Sci 34(7):1595. doi: 10.1023/A:1004528600213 CrossRefGoogle Scholar
  5. 5.
    Hashin Z (1962) J Appl Mech 29:143CrossRefGoogle Scholar
  6. 6.
    Dewey JM (1947) J Appl Phys 18:578CrossRefGoogle Scholar
  7. 7.
    Rice RW (1977) In: MacCrone RK (ed) Properties and microstructure, vol. 11. Academic Press, New York, pp 199–381Google Scholar
  8. 8.
    Fryxell RE, Chandler BA (1964) J Am Ceram Soc 47(6):283CrossRefGoogle Scholar
  9. 9.
    Hassselman DPH, Fulrath RM (1964) J Am Ceram Soc 47(1):52CrossRefGoogle Scholar
  10. 10.
    Mackenzie JK (1950) Proc Phys Soc Lond Sect B 63:2CrossRefGoogle Scholar
  11. 11.
    Rossi RC (1968) J Am Ceram Soc 51(8):433CrossRefGoogle Scholar
  12. 12.
    Bert CW (1985) J Mater Sci 20:2220. doi: 10.1007/BF01112307 CrossRefGoogle Scholar
  13. 13.
    Chung D-H (1963) Phil Mag 8:833CrossRefGoogle Scholar
  14. 14.
    Wagh AS, Poeppel RB, Singh JP (1991) J Mater Sci 26:3862. doi: 10.1007/BF01184983 CrossRefGoogle Scholar
  15. 15.
    Spinner S, Knudsen FP, Stone L (1963) J Res Natl Bureau Stand C 67C:39Google Scholar
  16. 16.
    Bal’shin MY (1949) Doklady Akademii Nauk SSSR 67(5):831Google Scholar
  17. 17.
    Knudsen FP (1959) J Am Ceram Soc 42(8):376CrossRefGoogle Scholar
  18. 18.
    McAdam GD (1951) J Iron Steel Inst 168:346–358Google Scholar
  19. 19.
    Phani KK (1986) J Mater Sci Lett 5:747CrossRefGoogle Scholar
  20. 20.
    Phani KK, Niyogi SK (1986) J Mater Sci Lett 5:427CrossRefGoogle Scholar
  21. 21.
    Phani KK (1986) Am Ceram Soc Bull 65(12):1584Google Scholar
  22. 22.
    Phani KK, Niyogi SK (1987) J Mater Sci 22(1):257. doi: 10.1007/BF01160581 CrossRefGoogle Scholar
  23. 23.
    Phani KK, Niyogi SK, De AK (1988) J Mater Sci Lett 7:1253CrossRefGoogle Scholar
  24. 24.
    Wagh AS, Singh JP, Poeppel RB (1993) J Mater Sci 28:3589. doi: 10.1007/BF01159841 CrossRefGoogle Scholar
  25. 25.
    Maitra AK, Phani KK (1994) J Mater Sci 29:4415. doi: 10.1007/BF00376263 CrossRefGoogle Scholar
  26. 26.
    Paskaramoorthy R, Meguid SA (2000) Int J Solid Struct 37:2341CrossRefGoogle Scholar
  27. 27.
    Ji S, Gu Q, Xia B (2006) J Mater Sci 41:1757. doi: 10.1007/s10853-006-2871-9 CrossRefGoogle Scholar
  28. 28.
    Ryshkewitch E (1953) J Am Ceram Soc 36(2):65CrossRefGoogle Scholar
  29. 29.
    Duckworth W (1953) J Am Ceram Soc 36(2):68CrossRefGoogle Scholar
  30. 30.
    Rice RW (1996) J Mater Sci 31:102. doi: 10.1007/BF00355133 CrossRefGoogle Scholar
  31. 31.
    Rice RW (1996) J Mater Sci 31:1509. doi: 10.1007/BF00357860 CrossRefGoogle Scholar
  32. 32.
    Spriggs RM (1961) J Am Ceram Soc 44:628–629Google Scholar
  33. 33.
    Knudsen FP (1962) J Am Ceram Soc 45(2):94CrossRefGoogle Scholar
  34. 34.
    Hassselman DPH (1962) J Am Ceram Soc 45(9):452CrossRefGoogle Scholar
  35. 35.
    Wang JC (1984) J Mater Sci 19(3):809. doi: 10.1007/BF00540452 CrossRefGoogle Scholar
  36. 36.
    Wang JC (1984) J Mater Sci 19(3):801. doi: 10.1007/BF00540451 CrossRefGoogle Scholar
  37. 37.
    Panakkal JP, Willems H, Arnold W (1990) J Mater Sci 25:1397. doi: 10.1007/BF00585456 Google Scholar
  38. 38.
    Rice RW (1976) J Am Ceram Soc 59(11–12):536CrossRefGoogle Scholar
  39. 39.
    Eudier M (1962) Powder Metall 9:278Google Scholar
  40. 40.
    Martin RB, Haynes RR (1971) J Am Ceram Soc 54(8):410CrossRefGoogle Scholar
  41. 41.
    Roberts AP, Garboczi EJ (2000) J Am Ceram Soc 83(12):3041CrossRefGoogle Scholar
  42. 42.
    Paul B (1960) Trans Metall Soc AIME 218:36Google Scholar
  43. 43.
    Ishai O, Cohen LJ (1967) Int J Mech Sci 9:539CrossRefGoogle Scholar
  44. 44.
    Boccaccini AR, Fan Z (1997) Ceram Int 23:239CrossRefGoogle Scholar
  45. 45.
    Hashin Z (1983) Trans ASME 50:481CrossRefGoogle Scholar
  46. 46.
    Ramakrishnan N, Arunachalam VS (1990) J Mater Sci 25:3930. doi: 10.1007/BF00582462 CrossRefGoogle Scholar
  47. 47.
    Mondal DP, Ramakrishnan N, Suresh KS, Das S (2007) Scr Mater 57:929CrossRefGoogle Scholar
  48. 48.
    Boccaccini AR (1999) J Porous Mater 6:369CrossRefGoogle Scholar
  49. 49.
    Mazilu P, Ondracek G (1989) In: Proceedings of Euromech Colloquium, Springer Verlag, Berlin, p 214Google Scholar
  50. 50.
    Personal communication with A.R. Boccaccini, March 13, 2011Google Scholar
  51. 51.
    Boccaccini AR (1994) J Mater Sci Lett 13:1035Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. A. Choren
    • 1
    • 3
    • 4
    Email author
  • S. M. Heinrich
    • 2
  • M. B. Silver-Thorn
    • 3
  1. 1.Milwaukee School of EngineeringMilwaukeeUSA
  2. 2.Department of Civil, Construction and Environmental EngineeringMarquette UniversityMilwaukeeUSA
  3. 3.Department of Biomedical EngineeringMarquette UniversityMilwaukeeUSA
  4. 4.Triad Engineering LLCOconomowocUSA

Personalised recommendations