Journal of Materials Science

, Volume 48, Issue 11, pp 4097–4108 | Cite as

Comparison of two soft chemistry routes for the synthesis of mesoporous carbon/β-SiC nanocomposites

  • Xavier Deschanels
  • Damien Hérault
  • Guilhem Arrachart
  • Cyrielle Rey
  • Agnès Grandjean
  • Guillaume Toquer
  • Renaud Podor
  • Thomas Zemb
  • Geneviève Cerveau
  • Robert Corriu


We compare the influence of using either molecular or colloidal precursors on the synthesis of a ceramic material containing SiC and porous carbon. Remarkably, the temperature of synthesis for crystalline SiC is independent of the route chosen. The excess carbon in the initial mixture is the source of the excess porous carbon that binds to the crystalline domains of SiC in the final products. Interestingly, increasing the initial area of surface contact between carbon and silicon in the ceramic precursor results in different porosities in the ‘meso’ range. Simultaneous control of the size and the relative amounts of Si and C in the precursors allows control to be exerted over the nature and texture of the final powders. A simple and general mechanism is herein proposed to explain the evolution of the surface area as a function of the volume fraction of residual carbon in the synthesised ceramic.

Supplementary material

10853_2013_7222_MOESM1_ESM.doc (76 kb)
Supplementary material 1 (DOC 76 kb)


  1. 1.
    Ledoux MJ, Pham-Huu C (2001) Cattech 5:226CrossRefGoogle Scholar
  2. 2.
    Okada K, Kato H, Nakajima K (1994) J Am Ceram Soc 77:1691CrossRefGoogle Scholar
  3. 3.
    Pham-Huu C, Bouchy C, Dintzer T, Ehret G, Estournes C, Ledoux MJ (1999) Appl Catal A 180:385CrossRefGoogle Scholar
  4. 4.
    Bao X, Nangrejo MR, Edirisinghe MJ (2000) J Mater Sci 35:4365. doi:10.1023/A:1004805023228 CrossRefGoogle Scholar
  5. 5.
    Acheson EG (1893) U.S. Patent 492Google Scholar
  6. 6.
    Gupta P, Wang W, Fan LS (2004) Ind Eng Chem Res 43:4732CrossRefGoogle Scholar
  7. 7.
    Corriu RJP (2000) Angew Chem Int Ed 39:1376CrossRefGoogle Scholar
  8. 8.
    Roduner E (2006) Chem Soc Rev 35:583CrossRefGoogle Scholar
  9. 9.
    Koga K, Ikeshoji T, Sugawara K (2004) Phys Rev Lett 92:115507CrossRefGoogle Scholar
  10. 10.
    Kevorkijan VM, Komac M, Kolar D (1992) J Mater Sci 27:2705. doi:10.1007/BF00540693 CrossRefGoogle Scholar
  11. 11.
    Lin YJ, Tsang CP (2003) Ceram Int 29:69CrossRefGoogle Scholar
  12. 12.
    Ishihara S, Tanaka H, Nishimura T (2006) J Mater Res 21:1167. doi:10.1557/jmr.2006.0138 CrossRefGoogle Scholar
  13. 13.
    Martin HP, Ecke R, Muller E (1998) J Eur Ceram Soc 18:1737CrossRefGoogle Scholar
  14. 14.
    Martin HP, Muller E, Knoll Y, Strienitz R, Schuster G (1995) J Mater Sci Lett 14:620CrossRefGoogle Scholar
  15. 15.
    Julbe A, Larbot A, Guizard C, Cot L, Charpin J, Bergez P (1990) Mater Res Bull 25:601CrossRefGoogle Scholar
  16. 16.
    Krstic VD (1992) J Am Ceram Soc 75:170CrossRefGoogle Scholar
  17. 17.
    Corriu RJP, Gerbier P, Guerin C, Henner B (1992) Angew Chem Int Ed 31:1195CrossRefGoogle Scholar
  18. 18.
    Zheng Y, Wang R, Wei RKW (2008) J Mater Sci 43:5331. doi:10.1007/s10853-008-2778-8 CrossRefGoogle Scholar
  19. 19.
    Jin GQ, Guo XY (2003) Micropor Mesopor Mater 60:207CrossRefGoogle Scholar
  20. 20.
    Colombo P, Mera G, Riedel R, Soraru GD (2010) J Am Ceram Soc 93:1805Google Scholar
  21. 21.
    Babic B, Bucevac D, Radosavljevic-Mihajlovic A, Dosen A, Zagorac J, Pantic J, Matovic B (2012) J Eur Ceram Soc 32:1901CrossRefGoogle Scholar
  22. 22.
    Xu J, Liu YM, Xue B, Li YX, Fan KN (2011) Phys Chem Chem Phys 13:10111CrossRefGoogle Scholar
  23. 23.
    Ohji T, Fukushima M (2012) Int Mater Rev 57:115CrossRefGoogle Scholar
  24. 24.
    Cerovic L, Milonjic SK, Zec SP (1995) Ceram Int 21:271CrossRefGoogle Scholar
  25. 25.
    Wei GCT (1983) J Am Ceram Soc 66:C111CrossRefGoogle Scholar
  26. 26.
    Larpkiattaworn S, Ngernchuklin P, Khongwong W, Pankurddee N, Wada SW (2006) Ceram Int 32:899CrossRefGoogle Scholar
  27. 27.
    Shen XN, Zheng Y, Zhan YY, Cai GH, Xiao YH (2007) Mat Lett 61:47666Google Scholar
  28. 28.
    Moene R, Makkee M, Moulijn JA (1998) Appl Catal A 167:321CrossRefGoogle Scholar
  29. 29.
    Vannice MA, Chao YL, Friedman RM (1986) Appl Catal 20:91CrossRefGoogle Scholar
  30. 30.
    Lednor PW (1992) Catal Today 15:243CrossRefGoogle Scholar
  31. 31.
    Li FB, Qian QL, Zhang SF, Yan F, Yuan GQ (2007) J Nat Gas Chem 16:363CrossRefGoogle Scholar
  32. 32.
    Wang DH, Fu X, Jin GQ, Guo XY (2011) Int J Mater Res 102:1408CrossRefGoogle Scholar
  33. 33.
    Tomasik P, Palasinski M, Wiejak S (1989) Adv Carbohydr Chem Biochem 47:203CrossRefGoogle Scholar
  34. 34.
    Hérault D, Rodembusch FLC, Gingras M, Cerveau G, Corriu RJP (2010) C R Chimie 13:566CrossRefGoogle Scholar
  35. 35.
    Deschanels X, Delchet C, Herault D, Magnin V, Podor R, Cerveau G, Zemb T, Corriu R (2010) Prog Colloid Polym Sci 137:47Google Scholar
  36. 36.
    Avnir D, Klein LC, Levy D, Schubert U, Wojcik AB (2003) In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2. Wiley, ChichesterGoogle Scholar
  37. 37.
    Uchino T, Aboshi A, Kohara S, Ohishi Y, Sakashita M, Aoki K (2004) Phys Rev B 69:155409CrossRefGoogle Scholar
  38. 38.
    Corriu RJP, Gerbier P, Guerin C, Henner BJL, Jean AN, Mutin PH (1992) Organometallics 11:2507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xavier Deschanels
    • 1
  • Damien Hérault
    • 2
  • Guilhem Arrachart
    • 1
  • Cyrielle Rey
    • 1
  • Agnès Grandjean
    • 1
  • Guillaume Toquer
    • 1
  • Renaud Podor
    • 1
  • Thomas Zemb
    • 1
  • Geneviève Cerveau
    • 3
  • Robert Corriu
    • 3
  1. 1.ICSM-UMR 5257, CEA/CNRS/UM2/ENSCM MarcouleBagnols-sur-CèzeFrance
  2. 2.Centrale Marseille, Aix Marseille UniversitéMarseilleFrance
  3. 3.Institut Charles Gerhardt, UMR 5253Université de Montpellier 2MontpellierFrance

Personalised recommendations