Journal of Materials Science

, Volume 48, Issue 11, pp 3877–3893 | Cite as

Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing

  • Massimiliano Lanzi
  • Francesco Paolo Di-Nicola
  • Massimiliano Livi
  • Luisa Paganin
  • Fabio Cappelli
  • Filippo Pierini


This article describes the preparation of thin films of conjugated polymers which can enhance their specific electrical conductivity by several orders of magnitude by changing their state from insulating to conducting materials. The examined polymers, i.e., a polyacetylenic and a polythiophenic derivative, are functionalized with thioalkylic side chains and are soluble in common organic solvents from which they lead to thick homogeneous films. The films can be deposited on different substrates, either rigid or flexible, and can be easily exposed to laser radiation to make them conductive. The process is irreversible, and the final conductivity is stable over time, even in the presence of high temperatures (up to 180 °C), moisture, and air. The high stability of treated samples, easy polymer synthesis and quick and inexpensive suitably tailored laser tracing procedure make these materials very promising for applications in organic electronics and in the development of new electronic circuitry.


Thiophene Common Organic Solvent Laser Exposure Specific Electrical Conductivity Pristine Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by University of Bologna-Funds for selected research topics 2012 and by Felsilab Srl, Bologna, Italy.


  1. 1.
    Gunes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324CrossRefGoogle Scholar
  2. 2.
    Murphy AR, Frèchet JMJ (2007) Chem Rev 107:1066CrossRefGoogle Scholar
  3. 3.
    Li G, Shrotiya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864CrossRefGoogle Scholar
  4. 4.
    Novak BM, Hegen E, Visnanathan A, Magde L (1990) Polym Prepr 31:482Google Scholar
  5. 5.
    Gorman CB, Biebuyck HA, Whitesides GM (1995) Chem Mater 7:526CrossRefGoogle Scholar
  6. 6.
    Bargon J, Baumann R, Boeker P (1992) Proc SPIE 1672:441CrossRefGoogle Scholar
  7. 7.
    Roth HK, Eidner K, Roth H (1996) Circ World 22:19CrossRefGoogle Scholar
  8. 8.
    Roth HK, Gruber H, Fanghaenel E, Richter AM, Hoerig W (1990) Synth Met 37:151CrossRefGoogle Scholar
  9. 9.
    Srinivasan R, Hall RR, Wilson WD, Loehle WD, Allbee DC (1994) Synth Met 66:301CrossRefGoogle Scholar
  10. 10.
    Decker C (1987) J Polym Sci Polym Lett 25:253Google Scholar
  11. 11.
    Roth HK, Baumann R, Bargon J, Schroedner M (1991) Progr Colloid Polym Sci 85:157CrossRefGoogle Scholar
  12. 12.
    Richter AM, Richter JJM, Beye N, Fanghaenel E (1987) J Prakt Chem 329:811CrossRefGoogle Scholar
  13. 13.
    Okano Y, Masuda T, Hagashimura T (1982) Polymer J 14:477CrossRefGoogle Scholar
  14. 14.
    Richter AM, Laube U, Moniak F, Fanghaenel E, Hempel G, Goldenberg S, Scheler G (1991) Acta Polym 42:615CrossRefGoogle Scholar
  15. 15.
    Tobjork D, Kaihovirta NJ, Makela T, Pettersson FS, Osterbacka R (2008) Org Electron 9:931CrossRefGoogle Scholar
  16. 16.
    Youn H, Jeon K, Shin S, Yang M (2012) Org Electron 13:1470CrossRefGoogle Scholar
  17. 17.
    Aernouts T, Aleksandrov T, Girotto C, Genol J, Poortmans J (2008) J Appl Phys Lett 92:033306CrossRefGoogle Scholar
  18. 18.
    Hoth CN, Schilinsky P, Choulis SA, Brabec CJ (2008) Nano Lett 8:2806CrossRefGoogle Scholar
  19. 19.
    Jeong JA, Kim HK (2010) Curr Appl Phys 10:e105CrossRefGoogle Scholar
  20. 20.
    Jeong JA, Kim J, Kim HK (2011) Sol Energy Mater Sol Cells 95:1974CrossRefGoogle Scholar
  21. 21.
    Schaferling M, Bauerle P (2004) J Mater Chem 14:1132CrossRefGoogle Scholar
  22. 22.
    Su YW, Chelan S, Wei KH (2012) Mater Today 15:554CrossRefGoogle Scholar
  23. 23.
    Krebs FC, Norrman K (2010) Appl Mater Interfaces 2:877CrossRefGoogle Scholar
  24. 24.
    Krebs FC (2009) Sol Energy Mater Sol Cells 93:394CrossRefGoogle Scholar
  25. 25.
    Sondergaard RR, Hosel M, Krebs FC (2013) J Polym Sci B 51:16CrossRefGoogle Scholar
  26. 26.
    Hubler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingeback M, Wagenpfahl A, Deibel C, Dyakonov V (2011) Adv Energy Mater 1:1018CrossRefGoogle Scholar
  27. 27.
    Kopola P, Aernouts T, Sliz R, Guillerez S, Yikunnari M, Cheyns D, Valimaki M, Tuomikoski M, Hast J, Jabbour G, Myllyla R, Maaninen A (2011) Sol Energy Mater Sol Cells 95:1344CrossRefGoogle Scholar
  28. 28.
    Hambsch M, Reuter K, Stanel M, Schmidt G, Kempa H, Fugmann U, Hahn U, Hubler AC (2010) Mater Sci Eng B 170:93CrossRefGoogle Scholar
  29. 29.
    Kim A, Lee H, Lee J, Cho SM, Chae H (2011) J Nanosci Nanotechnol 11:546CrossRefGoogle Scholar
  30. 30.
    Hubler AC, Bellmann M, Schmidt GC, Zimmermann S, Gerlach A, Haentjes C (2012) Org Electron 13:2290CrossRefGoogle Scholar
  31. 31.
    Krebs FC, Tromholt T, Jorgensen M (2010) Nanoscale 2:873CrossRefGoogle Scholar
  32. 32.
    Angmo D, Hosel M, Krebs FC (2012) Sol Energy Mater Sol Cells 107:329CrossRefGoogle Scholar
  33. 33.
    Sandstrom A, Dam HF, Krebs FC, Edman L (2012) Nat Commun 3:1002CrossRefGoogle Scholar
  34. 34.
    Jensen J, Dam HF, Reynolds JR, Dyer AL, Krebs FC (2012) J Polym Sci B 50:536CrossRefGoogle Scholar
  35. 35.
    Galagan Y, Andriessen R, Rubingh E, Grossiord N, Blom P, Veenstra S, Verhees W, Kroon J (2010) LOPE-C 88 (ISBN 978-3-00-029955-1)Google Scholar
  36. 36.
    Eom SH, Senthilarasu S, Uthirakumar P, Yoon SC, Lim J, Lee C, Lim HS, Lee J, Lee SH (2009) Org Electron 10:536CrossRefGoogle Scholar
  37. 37.
    Kwon JT, Ean SH, Moon BS, Shin JK, Kim KS, Lee SH, Lee YS (2012) Bull Korean Chem Soc 33:464CrossRefGoogle Scholar
  38. 38.
    Girotto C, Rand BP, Steudel S, Genoe J, Heremans P (2009) Org Electron 10:735CrossRefGoogle Scholar
  39. 39.
    Yu BK, Vak D, Jo J, Na SI, Kim SS, Kim MK, Kim DY (2010) IEEE J Sel Top Quantum Electron 16:1838CrossRefGoogle Scholar
  40. 40.
    Tedde SF, Kern J, Sterzi T, Furst J, Lugli P, Hayden O (2009) Nano Lett 9:980CrossRefGoogle Scholar
  41. 41.
    Beaujuge PM, Ellinger S, Reynolds JR (2008) Adv Mater 20:2772CrossRefGoogle Scholar
  42. 42.
    Helgesen M, Carlé JE, Andreasen B, Hoesel M, Norrman K, Sondergaard R, Krebs FC (2012) Polym Chem 3:2649CrossRefGoogle Scholar
  43. 43.
    Bargon J, Baumann R (1993) Micro Electronic Engineering 20:55CrossRefGoogle Scholar
  44. 44.
    Baumann R, Kulish U, Schroedner M, Roth HK, Sebastian D, Bargon J (1993) Synth Met 55–56:3643CrossRefGoogle Scholar
  45. 45.
    Bellamy LJ (1975) In: The infra-red spectra of complex molecules. Chapman and Hall, London, p. 395 ffGoogle Scholar
  46. 46.
    Nyquist RA (2001) In: Interpreting infrared Raman and NMR spectra. Academic Press, LondonGoogle Scholar
  47. 47.
    Lee JM, Lee SJ, Jung YJ, Kim JH (2008) Curr Appl Phys 8:659CrossRefGoogle Scholar
  48. 48.
    Costa-Bizzarri P, Della-Casa C, Lanzi M, Bertinelli F, Iarossi D, Mucci A, Schenetti L (1999) Synth Met 104:1CrossRefGoogle Scholar
  49. 49.
    Folli U, Iarossi D, Montorsi M, Mucci A, Schenetti L (1995) J Chem Soc Perkin Trans 1:537CrossRefGoogle Scholar
  50. 50.
    Bertinelli F, Costa Bizzarri P, Della Casa C, Lanzi M (2002) Spectrochim Acta A 58:583CrossRefGoogle Scholar
  51. 51.
    Lanzi M, Costa-Bizzarri P, Della-Casa C (1997) Synth Met 89:181CrossRefGoogle Scholar
  52. 52.
    Goldoni F, Iarossi D, Mucci A, Schenetti L, Zambianchi M (1997) J Mater Chem 7:593CrossRefGoogle Scholar
  53. 53.
    Fraleoni-Morgera A, Della-Casa C, Costa-Bizzarri P, Lanzi M, Missiroli A (2005) Macromolecules 38:3170CrossRefGoogle Scholar
  54. 54.
    Costa-Bizzarri P, Andreani F, Della-Casa C, Lanzi M, Salatelli E (1995) Synth Met 75:141CrossRefGoogle Scholar
  55. 55.
    Roncali J (1992) Chem Rev 92:711CrossRefGoogle Scholar
  56. 56.
    Lowe RS, Ewbank PC, Lin J, Zhai L, McCullough RD (2001) Macromolecules 34:4324CrossRefGoogle Scholar
  57. 57.
    Folli U, Goldoni F, Iarossi D, Mucci A, Schenetti L (1996) J Chem Res 69:0552Google Scholar
  58. 58.
    Cagnoli R, Mucci A, Parenti F, Schenetti L, Borsari M, Lodi A, Ponterini G (2006) Polymer 47:775CrossRefGoogle Scholar
  59. 59.
    Goldoni F, Iarossi D, Mucci A, Schenetti L, Costa-Bizzarri P, Della-Casa C, Lanzi M (1997) Polymer 38:1297CrossRefGoogle Scholar
  60. 60.
    Mucci A, Schenetti L (1995) Macromol Chem Phys 196:2687CrossRefGoogle Scholar
  61. 61.
    Atta Ur-R (ed) (2002) New advances in analytical chemistry, vol. 3. Taylor & Francis, London, pp 1–40Google Scholar
  62. 62.
    Lanzi M, Costa Bizzarri P, Paganin L, Cesari G (2007) Eur Polym J 43:72CrossRefGoogle Scholar
  63. 63.
    Transistor. Teoria e applicazioni. Philips semiconduttori, Milan, Italy, 1965Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Massimiliano Lanzi
    • 1
  • Francesco Paolo Di-Nicola
    • 1
  • Massimiliano Livi
    • 1
  • Luisa Paganin
    • 1
  • Fabio Cappelli
    • 2
  • Filippo Pierini
    • 3
  1. 1.Dipartimento di Chimica Industriale e dei MaterialiUniversità di BolognaBolognaItaly
  2. 2.San Lazzaro di SavenaItaly
  3. 3.Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly

Personalised recommendations