Journal of Materials Science

, Volume 48, Issue 13, pp 4592–4598 | Cite as

Structure of grains and grain boundaries in cryo-mechanically processed Ti alloy

  • Arup Dasgupta
  • S. Murugesan
  • S. Saroja
  • M. Vijayalakshmi
  • M. Luysberg
  • M. Veron
  • E. Rauch
  • T. Jayakumar
Nanostructured Materials


A Ti5Ta1.8Nb alloy with the major phase as α (hcp) Ti has been subjected to severe plastic deformation by means of cryo-rolling. Significant grain refinement (from ~5 μm to ~60 nm) has been observed. The mechanism of grain refinement was studied by analysis of lattice strain variations with increase in cold work using XRD technique. Various intermediate stages, such as hardening, alignment of dislocations, cell formation and criticality before new grain formation, were identified. Formation of cells with dislocations alignment at the boundaries and then finally forming an ultra-fine grain structure was confirmed by transmission electron microscopy studies. Detailed grain boundary characterisation has been carried out using high-resolution transmission electron microscopy studies and crystallographic texture analysis. The grain-refined structure was found to possess a large fraction of high angle boundaries identified also as special boundaries by evaluating the misorientation angle/axis sets for a pair of adjacent grain boundaries.


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Lowe TC, Valiev RZ (2000) J Miner Metals Mater Soc (JOM) 52:27–28CrossRefGoogle Scholar
  3. 3.
    Koch CC, Cho YS (1992) Nanostr Mater 1:207CrossRefGoogle Scholar
  4. 4.
    Gil Sevillano J, VanHoutte P, Aernoudt E (1980) In: Christian JW, Haasen P, Massalski TB (eds) Progress in materials science: large strain work hardening and textures (vol 25). Pergamon, New York, p 69Google Scholar
  5. 5.
    Alexandrov IV (1998) Mater Trans 29A:2253Google Scholar
  6. 6.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  7. 7.
    Salishchev GA, Valiakhmetov OR, Valitov VA, Muktarov SK (1994) Mater Sci Forum 170–172:121CrossRefGoogle Scholar
  8. 8.
    Nes E, Marthinsen K, Brechet Y (2002) Scrip Mater 47:607CrossRefGoogle Scholar
  9. 9.
    Nes E (1997) Prog Mater Sci 41:129–193CrossRefGoogle Scholar
  10. 10.
    Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Watanabe Tadao (1993) Mater Sci Eng A166:11Google Scholar
  12. 12.
    Watanabe T (1994) Mater Sci Eng A176:39Google Scholar
  13. 13.
    Watanabe T (2011) J Mater Sci 46:4095. doi: 10.1007/s10853-011-5393-z CrossRefGoogle Scholar
  14. 14.
    Boyer RR (1996) Mater Sci Eng A213:103Google Scholar
  15. 15.
    Dasgupta A, Karthikeyan T, Saroja S, Raju VR, Vijayalakshmi M, Dayal RK, Raghunathan VS (2007) J Mater Eng Perform 16:800–806CrossRefGoogle Scholar
  16. 16.
    Dasgupta A, Laha K, Kayalvizhi R, Jeyaganesh B, Raju S, Murugesan S, Saroja S, Sarma VS, Vijayalakshmi M (2009) Mater Res Soc Symp Proc 1137:EE05–EE29Google Scholar
  17. 17.
    Dasgupta A, Basu J, Parida PK, Vadavadagi BH, Saroja S, Vijayalakshmi M, Jayakumar T (2012) Forum 702–703:131Google Scholar
  18. 18.
    Karthikeyan T, Dasgupta A, Saroja S, Vijayalakshmi M (2005) J Mater Eng Perform 14:241–248CrossRefGoogle Scholar
  19. 19.
    Edgar F (2010) Z Kristallogr 225:103CrossRefGoogle Scholar
  20. 20.
    Lutterotti L, Scardi P (1990) J Appl Crystallogr 23:246CrossRefGoogle Scholar
  21. 21.
    Lutterotti L, Giolanella S (1997) Acta Mater 46:101CrossRefGoogle Scholar
  22. 22.
    Nemat-Nasser S, Guo WG, Cheng JY (1999) Acta Mater 47:3705CrossRefGoogle Scholar
  23. 23.
    Prinz F, Argon AS (2006) Phys Stat Sol A 57:741CrossRefGoogle Scholar
  24. 24.
    Cahoon JR, Broughton WH, Kutzak AR (1971) Metal Trans 2:1979Google Scholar
  25. 25.
    Gleiter H (1969) Acta Metal 17:565CrossRefGoogle Scholar
  26. 26.
    Kokawa H, Watanabe T, Karashima S (1981) Philos Mag A 44:1239CrossRefGoogle Scholar
  27. 27.
    Engler Olaf, Randle Valerie (2010) Introduction to texture analysis macrotexture, microtexture and orientation mapping, 2nd edn. CRC Press, New York. ISBN 978-1-4200-6365-3Google Scholar
  28. 28.
    Ryoo HS, Hwang SK, Kim MH, Kwun SI (2001) Scrip Mater 44:2583CrossRefGoogle Scholar
  29. 29.
    Randlea V, Rohrerb GS, Hua Y (2008) Scrip Mater 58:183CrossRefGoogle Scholar
  30. 30.
    Bonnet R, Cousineau E, Warrington DH (1981) Acta Cryst A37:184Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Arup Dasgupta
    • 1
  • S. Murugesan
    • 1
  • S. Saroja
    • 1
  • M. Vijayalakshmi
    • 1
  • M. Luysberg
    • 2
  • M. Veron
    • 3
  • E. Rauch
    • 3
  • T. Jayakumar
    • 1
  1. 1.Physical Metallurgy Group, Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Ernest Ruska Centre for Microscopy and Spectroscopy with ElectronsForschungszentrum JuelichGermany
  3. 3.CNRS-Grenoble INP, rue de la PhysiqueSaint Martin d’HèresFrance

Personalised recommendations