Journal of Materials Science

, Volume 48, Issue 10, pp 3863–3869 | Cite as

Atomic force microscopy nanolithography: fabrication of metallic nano-slits using silicon nitride tips

  • Tobias König
  • Thomas Papke
  • Alexey Kopyshev
  • Svetlana Santer
Article

Abstract

In this paper, we report on the properties of nano-slits created in metal thin films using atomic force microscope (AFM) nanolithography (AFM-NL). We demonstrate that instead of expensive diamond AFM tips, it is also possible to use low cost silicon nitride tips. It is shown that depending on the direction of scratching, nano-slits of different widths and depths can be fabricated at constant load force. We elucidate the reasons for this behavior and identify an optimal direction and load force for scratching a gold layer.

Graphical Abstract

Notes

Acknowledgements

This research is supported by the DFG grant SA1657/4-1.

Supplementary material

10853_2013_7188_MOESM1_ESM.docx (208 kb)
Supplementary material 1 (DOCX 207 kb)

References

  1. 1.
    Tseng AA (2011) Tip-based nanofabrication—fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Kim Y, Lieber CM (1992) Science 257:375–377CrossRefGoogle Scholar
  3. 3.
    Tseng AA (2010) Appl Surf Sci 256:4246–4252CrossRefGoogle Scholar
  4. 4.
    Rank R, Brueckl H, Kretz J, Moench I, Reiss G (1997) Vacuum 48:467–472CrossRefGoogle Scholar
  5. 5.
    Sumomogi T, Endo T, Kuwahara K, Kaneko R, Miyamoto T (1994) J Vac Sci Technol B 12:1876–1880CrossRefGoogle Scholar
  6. 6.
    Watanabe M, Minoda H, Takayanagi K (2004) Jpn J Appl Phys 43:6347–6349CrossRefGoogle Scholar
  7. 7.
    Li X, Nardi P, Baek CW, Kim JM, Kim YK (2005) J Micromech Microeng 15:551–556CrossRefGoogle Scholar
  8. 8.
    Fang TH, Chang JG, Weng CI (2006) Mater Sci Eng A 430:332–340CrossRefGoogle Scholar
  9. 9.
    Fang TH, Weng CI, Chang JG (2000) Nanotechnology 11:181–187CrossRefGoogle Scholar
  10. 10.
    Notargiacomo A, Foglietti V, Cianci E, Capellini G, Adami M, Faraci P, Evangelisti F, Nicolini C (1999) Nanotechnology 10:458–463CrossRefGoogle Scholar
  11. 11.
    Tseng AA, Shirakashi J, Nishimura S, Miyashita K, Notargiacomo A (2009) J Appl Phys 106:044314CrossRefGoogle Scholar
  12. 12.
    Kawasegi N, Morita N, Yamada S, Takano N, Oyama T, Ashida K, Ofune H (2007) Int J Mach Mach Mater 2:3–16Google Scholar
  13. 13.
    Kunze U, Klehn B (1999) Adv Mater 11:1473–1475CrossRefGoogle Scholar
  14. 14.
    Choi CH, Lee DJ, Sung J, Lee MW, Lee S, Lee E, Bh O (2010) Appl Surf Sci 256:7668–7671CrossRefGoogle Scholar
  15. 15.
    Sugihara H, Takahara A, Kajiyama T (2001) J Vac Sci Technol, B 19:593–595CrossRefGoogle Scholar
  16. 16.
    Firtel M, Henderson G, Sokolov I (2004) Ultramicroscopy 101:105–109CrossRefGoogle Scholar
  17. 17.
    Muir BW, Fairbrother A, Gengenbach TR, Rovere F, Abdo MA, McLean KM, Hartley PG (2006) Adv Mater 18:3079–3082CrossRefGoogle Scholar
  18. 18.
    Lu Z, Zhou Y, Du Y, Moate R, Wilton D, Pan G, Chen Y, Cui Z (2006) Appl Phys Lett 88:142507CrossRefGoogle Scholar
  19. 19.
    Tseng AA, Shirakashi J, Nishimura S, Miyashita K, Li Z (2010) J Nanosci Nanotechnol 10:456–466CrossRefGoogle Scholar
  20. 20.
    Miyake K, Fujisawa S, Korenaga A, Ishida T, Sasaki S (2004) Jpn J Appl Phys Part 1(43):4602–4605CrossRefGoogle Scholar
  21. 21.
    Kassavetis S, Mitsakakis K, Logothetidis S (2007) Mater Sci Eng C 27:1456–1460CrossRefGoogle Scholar
  22. 22.
    König T, Santer S (2012) Nanotechnology 23:155301CrossRefGoogle Scholar
  23. 23.
    König T, Sekhar YN, Santer S (2012) J Mater Chem 22:5945–5950CrossRefGoogle Scholar
  24. 24.
    König T, Sekhar YN, Santer S (2012) Plasmonics 7:535–542CrossRefGoogle Scholar
  25. 25.
    König T, Santer S (2012) Nanotechnology 23:485304CrossRefGoogle Scholar
  26. 26.
    König T, Goldenberg LM, Kulikovska O, Kulikovsky L, Stumpe J, Santer S (2011) Soft Matter 7:4174–4178CrossRefGoogle Scholar
  27. 27.
    Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1996) Rev Sci Instrum 67:3583–3590CrossRefGoogle Scholar
  28. 28.
    Filho HDF, Maurício MHP, Ponciano CR, Prioli R (2004) Mater Sci Eng B 112:194–199CrossRefGoogle Scholar
  29. 29.
    Jiang X, Wu G, Zhou J, Wang S, Tseng AA, Du Z (2011) Nanoscale Res Lett 6:518CrossRefGoogle Scholar
  30. 30.
    Yan YD, Sun T, Liang YC, Dong S (2009) Tribol Int 42:66–70CrossRefGoogle Scholar
  31. 31.
    Mulliah D, Kenny SD, Smith R, Sanz-Navarro CF (2004) Nanotechnolgy 15:243–249CrossRefGoogle Scholar
  32. 32.
    Bhushan B (2011) Nanotribology and nanomechanics. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Tseng AA, Jou S, Huang JC, Shirakashi J, Chen TP (2010) J Vac Sci Technol B 28:202–210CrossRefGoogle Scholar
  34. 34.
    Carpick RW, Salmeron M (1997) Chem Rev 97:1163–1194CrossRefGoogle Scholar
  35. 35.
    Tzeng AA (2011) Tip-Based Nanofabrication. Springer, New YorkCrossRefGoogle Scholar
  36. 36.
    Vaz AR, Salvadori MC, Cattani M, Metastab J (2004) Nanocryst Mat 20–21:758–762CrossRefGoogle Scholar
  37. 37.
    Agrawal R, Moldovan N, Espinosa HD (2009) J Appl Phys 106:064311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tobias König
    • 1
  • Thomas Papke
    • 1
  • Alexey Kopyshev
    • 1
  • Svetlana Santer
    • 1
  1. 1.Department of Experimental Physics, Institute for Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations