Journal of Materials Science

, Volume 48, Issue 10, pp 3863–3869 | Cite as

Atomic force microscopy nanolithography: fabrication of metallic nano-slits using silicon nitride tips

  • Tobias König
  • Thomas Papke
  • Alexey Kopyshev
  • Svetlana Santer


In this paper, we report on the properties of nano-slits created in metal thin films using atomic force microscope (AFM) nanolithography (AFM-NL). We demonstrate that instead of expensive diamond AFM tips, it is also possible to use low cost silicon nitride tips. It is shown that depending on the direction of scratching, nano-slits of different widths and depths can be fabricated at constant load force. We elucidate the reasons for this behavior and identify an optimal direction and load force for scratching a gold layer.

Graphical Abstract


Atomic Force Microscope Silicon Nitride Metal Layer Load Force Wear Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by the DFG grant SA1657/4-1.

Supplementary material

10853_2013_7188_MOESM1_ESM.docx (208 kb)
Supplementary material 1 (DOCX 207 kb)


  1. 1.
    Tseng AA (2011) Tip-based nanofabrication—fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Kim Y, Lieber CM (1992) Science 257:375–377CrossRefGoogle Scholar
  3. 3.
    Tseng AA (2010) Appl Surf Sci 256:4246–4252CrossRefGoogle Scholar
  4. 4.
    Rank R, Brueckl H, Kretz J, Moench I, Reiss G (1997) Vacuum 48:467–472CrossRefGoogle Scholar
  5. 5.
    Sumomogi T, Endo T, Kuwahara K, Kaneko R, Miyamoto T (1994) J Vac Sci Technol B 12:1876–1880CrossRefGoogle Scholar
  6. 6.
    Watanabe M, Minoda H, Takayanagi K (2004) Jpn J Appl Phys 43:6347–6349CrossRefGoogle Scholar
  7. 7.
    Li X, Nardi P, Baek CW, Kim JM, Kim YK (2005) J Micromech Microeng 15:551–556CrossRefGoogle Scholar
  8. 8.
    Fang TH, Chang JG, Weng CI (2006) Mater Sci Eng A 430:332–340CrossRefGoogle Scholar
  9. 9.
    Fang TH, Weng CI, Chang JG (2000) Nanotechnology 11:181–187CrossRefGoogle Scholar
  10. 10.
    Notargiacomo A, Foglietti V, Cianci E, Capellini G, Adami M, Faraci P, Evangelisti F, Nicolini C (1999) Nanotechnology 10:458–463CrossRefGoogle Scholar
  11. 11.
    Tseng AA, Shirakashi J, Nishimura S, Miyashita K, Notargiacomo A (2009) J Appl Phys 106:044314CrossRefGoogle Scholar
  12. 12.
    Kawasegi N, Morita N, Yamada S, Takano N, Oyama T, Ashida K, Ofune H (2007) Int J Mach Mach Mater 2:3–16Google Scholar
  13. 13.
    Kunze U, Klehn B (1999) Adv Mater 11:1473–1475CrossRefGoogle Scholar
  14. 14.
    Choi CH, Lee DJ, Sung J, Lee MW, Lee S, Lee E, Bh O (2010) Appl Surf Sci 256:7668–7671CrossRefGoogle Scholar
  15. 15.
    Sugihara H, Takahara A, Kajiyama T (2001) J Vac Sci Technol, B 19:593–595CrossRefGoogle Scholar
  16. 16.
    Firtel M, Henderson G, Sokolov I (2004) Ultramicroscopy 101:105–109CrossRefGoogle Scholar
  17. 17.
    Muir BW, Fairbrother A, Gengenbach TR, Rovere F, Abdo MA, McLean KM, Hartley PG (2006) Adv Mater 18:3079–3082CrossRefGoogle Scholar
  18. 18.
    Lu Z, Zhou Y, Du Y, Moate R, Wilton D, Pan G, Chen Y, Cui Z (2006) Appl Phys Lett 88:142507CrossRefGoogle Scholar
  19. 19.
    Tseng AA, Shirakashi J, Nishimura S, Miyashita K, Li Z (2010) J Nanosci Nanotechnol 10:456–466CrossRefGoogle Scholar
  20. 20.
    Miyake K, Fujisawa S, Korenaga A, Ishida T, Sasaki S (2004) Jpn J Appl Phys Part 1(43):4602–4605CrossRefGoogle Scholar
  21. 21.
    Kassavetis S, Mitsakakis K, Logothetidis S (2007) Mater Sci Eng C 27:1456–1460CrossRefGoogle Scholar
  22. 22.
    König T, Santer S (2012) Nanotechnology 23:155301CrossRefGoogle Scholar
  23. 23.
    König T, Sekhar YN, Santer S (2012) J Mater Chem 22:5945–5950CrossRefGoogle Scholar
  24. 24.
    König T, Sekhar YN, Santer S (2012) Plasmonics 7:535–542CrossRefGoogle Scholar
  25. 25.
    König T, Santer S (2012) Nanotechnology 23:485304CrossRefGoogle Scholar
  26. 26.
    König T, Goldenberg LM, Kulikovska O, Kulikovsky L, Stumpe J, Santer S (2011) Soft Matter 7:4174–4178CrossRefGoogle Scholar
  27. 27.
    Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1996) Rev Sci Instrum 67:3583–3590CrossRefGoogle Scholar
  28. 28.
    Filho HDF, Maurício MHP, Ponciano CR, Prioli R (2004) Mater Sci Eng B 112:194–199CrossRefGoogle Scholar
  29. 29.
    Jiang X, Wu G, Zhou J, Wang S, Tseng AA, Du Z (2011) Nanoscale Res Lett 6:518CrossRefGoogle Scholar
  30. 30.
    Yan YD, Sun T, Liang YC, Dong S (2009) Tribol Int 42:66–70CrossRefGoogle Scholar
  31. 31.
    Mulliah D, Kenny SD, Smith R, Sanz-Navarro CF (2004) Nanotechnolgy 15:243–249CrossRefGoogle Scholar
  32. 32.
    Bhushan B (2011) Nanotribology and nanomechanics. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Tseng AA, Jou S, Huang JC, Shirakashi J, Chen TP (2010) J Vac Sci Technol B 28:202–210CrossRefGoogle Scholar
  34. 34.
    Carpick RW, Salmeron M (1997) Chem Rev 97:1163–1194CrossRefGoogle Scholar
  35. 35.
    Tzeng AA (2011) Tip-Based Nanofabrication. Springer, New YorkCrossRefGoogle Scholar
  36. 36.
    Vaz AR, Salvadori MC, Cattani M, Metastab J (2004) Nanocryst Mat 20–21:758–762CrossRefGoogle Scholar
  37. 37.
    Agrawal R, Moldovan N, Espinosa HD (2009) J Appl Phys 106:064311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tobias König
    • 1
  • Thomas Papke
    • 1
  • Alexey Kopyshev
    • 1
  • Svetlana Santer
    • 1
  1. 1.Department of Experimental Physics, Institute for Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations