Journal of Materials Science

, Volume 48, Issue 10, pp 3852–3856

Weak ferromagnetic polar phase in the BiFe1−xTixO3 multiferroics

  • V. A. Khomchenko
  • I. O. Troyanchuk
  • V. Sikolenko
  • J. A. Paixão
Article

Abstract

Neutron powder diffraction and magnetization measurements of selected samples of the BiFe1−xTixO3 series were performed. Ti4+ substitution was shown to induce the appearance of weak ferromagnetism in the initial polar R3c phase stable at x ≤ 0.1. In the concentration range 0 ≤ x ≤ 0.1, room-temperature residual magnetization increases from 0 to 0.25 emu/g (the latter is characteristic of the field-induced weak ferromagnetic state in pure BiFeO3). The calculated ferroelectric polarization decreases from ~70 μC/cm2 (x = 0) to ~60 μC/cm2 (x = 0.1) at room temperature. Magnetic ordering coexists with the large spontaneous polarization in a broad temperature range to make the BiFe1−xTixO3 (x → 0.1) perovskites promising for multiferroic applications.

References

  1. 1.
    Catalan G, Scott JF (2009) Adv Mater 21:2463CrossRefGoogle Scholar
  2. 2.
    Kubel F, Schmid H (1990) Acta Cryst B 46:698CrossRefGoogle Scholar
  3. 3.
    Palewicz A, Sosnowska I, Przenioslo R, Hewat AW (2010) Acta Phys Pol A 117:296Google Scholar
  4. 4.
    Shvartsman VV, Kleemann W, Haumont R, Kreisel J (2007) Appl Phys Lett 90:172115CrossRefGoogle Scholar
  5. 5.
    Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Phys Rev B 76:024116CrossRefGoogle Scholar
  6. 6.
    Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) J Phys C 15:4835CrossRefGoogle Scholar
  7. 7.
    Dzyaloshinsky I (1958) J Phys Chem Solids 4:241CrossRefGoogle Scholar
  8. 8.
    Moriya T (1960) Phys Rev 120:91CrossRefGoogle Scholar
  9. 9.
    Kadomtseva AM, Zvezdin AK, Popov YuF, Pyatakov AP, Vorob’ev GP (2004) JETP Lett 79:571CrossRefGoogle Scholar
  10. 10.
    Khomchenko VA, Karpinsky DV, Kholkin AL, Sobolev NA, Kakazei GN, Araujo JP, Troyanchuk IO, Costa BFO, Paixão JA (2010) J Appl Phys 108:074109CrossRefGoogle Scholar
  11. 11.
    Khomchenko VA, Pereira LCJ, Paixão JA (2011) J Phys D Appl Phys 44:185406CrossRefGoogle Scholar
  12. 12.
    V.A. Khomchenko, I.O. Troyanchuk, D.M. Többens, V. Sikolenko, and J.A. Paixão, “Composition and temperature-driven structural transitions in Bi1−xCaxFeO3 multiferroics: neutron diffraction study” (submitted to J Phys: Condens Matter)Google Scholar
  13. 13.
    Chang F, Zhang N, Yang F, Wang S, Song G (2007) J Phys D Appl Phys 40:7799CrossRefGoogle Scholar
  14. 14.
    Kumar A, Yadav KL (2010) Phys B 405:4650CrossRefGoogle Scholar
  15. 15.
    Cheng ZX, Wang XL, Du Y, Dou SX (2010) J Phys D Appl Phys 43:242001CrossRefGoogle Scholar
  16. 16.
    Selbach SM, Tybell T, Einarsrud M-A, Grande T (2009) Chem Mater 21:5176CrossRefGoogle Scholar
  17. 17.
    Goodenough JB (1955) Phys Rev 100:564CrossRefGoogle Scholar
  18. 18.
    Kanamori J (1959) J Phys Chem Solids 10:87CrossRefGoogle Scholar
  19. 19.
    Belik AA, Abakumov AM, Tsirlin AA, Hadermann J, Kim J, Van Tendeloo G, Takayama-Muromachi E (2011) Chem Mater 23:4505CrossRefGoogle Scholar
  20. 20.
    Shannon RD (1976) Acta Cryst A 32:751CrossRefGoogle Scholar
  21. 21.
    Kumar M, Yadav KL (2007) Appl Phys Lett 91:112911CrossRefGoogle Scholar
  22. 22.
    Troyanchuk IO, Bushinsky MV, Chobot AN, Mantytskaya OS, Tereshko NV (2009) JETP Lett 89:180CrossRefGoogle Scholar
  23. 23.
    Qi X, Dho J, Tomov R, Blamire MG, MacManus-Driscoll JL (2005) Appl Phys Lett 86:062903CrossRefGoogle Scholar
  24. 24.
    Murari NM, Thomas R, Melgarejo RE, Pavunny SP, Katiyar RS (2009) J Appl Phys 106:014103CrossRefGoogle Scholar
  25. 25.
    Rodríguez-Carvajal J (1993) Phys B 192:55CrossRefGoogle Scholar
  26. 26.
    Troyanchuk IO, Karpinsky DV, Bushinsky MV, Khomchenko VA, Kakazei GN, Araujo JP, Tovar M, Sikolenko V, Efimov V, Kholkin AL (2011) Phys Rev B 83:054109CrossRefGoogle Scholar
  27. 27.
    Levin I, Karimi S, Provenzano V, Dennis CL, Wu H, Comyn TP, Stevenson TJ, Smith RI, Reaney IM (2010) Phys Rev B 81:020103CrossRefGoogle Scholar
  28. 28.
    Jartych E, Mazurek M, Lisinska-Czekaj A, Czekaj D (2010) J Magn Magn Mater 322:51CrossRefGoogle Scholar
  29. 29.
    Van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, Zandbergen HW (1994) J Solid State Chem 110:100CrossRefGoogle Scholar
  30. 30.
    Glazer AM (1975) Acta Cryst A 31:756CrossRefGoogle Scholar
  31. 31.
    Sosnowska I, Schäfer W, Kockelmann W, Andersen KH, Troyanchuk IO (2002) Appl Phys A 74:S1040CrossRefGoogle Scholar
  32. 32.
    Troyanchuk IO, Karpinsky DV, Bushinsky MV, Kovetskaya MI, Efimova EA, Eremenko VV (2011) JETP 113:1025CrossRefGoogle Scholar
  33. 33.
    Khomchenko VA, Troyanchuk IO, Karpinsky DV, Das S, Amaral VS, Tovar M, Sikolenko V, Paixão JA (2012) J Appl Phys 112:084102CrossRefGoogle Scholar
  34. 34.
    Picozzi S, Ederer C (2009) J Phys Condens Matter 21:303201CrossRefGoogle Scholar
  35. 35.
    Cohen RE (1992) Nature 358:136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. A. Khomchenko
    • 1
  • I. O. Troyanchuk
    • 2
  • V. Sikolenko
    • 3
    • 4
  • J. A. Paixão
    • 1
  1. 1.CEMDRX/Department of PhysicsUniversity of CoimbraCoimbraPortugal
  2. 2.SSPA “Scientific-Practical Materials Research Center of NAS of Belarus”MinskBelarus
  3. 3.Laboratory for Neutron ScatteringPaul Scherrer InstituteVilligenSwitzerland
  4. 4.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations